# **ACADEMIC PROGRAMME GUIDE**

# BACHELOR OF ENGINEERING (ELECTRONICS AND COMPUTER SCIENCE ENGINEERING)

Batch 2018



HIMACHAL PRADESH - NAAC Accredited

Department of Electronics and Communication Engineering Chitkara University School of Engineering and Technology Chitkara University, Himachal Pradesh, India

| S. No. | Contents                         | Page No. |
|--------|----------------------------------|----------|
| 1.     | General Information              | 2-5      |
| 2.     | Eligibility for Admission        | 5        |
| 3.     | Programme Duration               | 5        |
| 4.     | Pedagogical Aspects              | 5        |
| 5.     | Programme Structure              | 6-13     |
| 6.     | Assessment and Evaluation        | 14       |
| 7.     | Rules for Attendance             | 15       |
| 8.     | Grading System                   | 15-17    |
| 9.     | Promotion and Registration       | 17       |
| 10.    | Migration/Credit Transfer Policy | 17-18    |
| 11.    | Eligibility to Award the Degree  | 18       |
| 12.    | Programme Overview               | 19-116   |

## Index

## **1. General Information**



Bachelor of Engineering programme in Electronics and Computer Science Engineering prepares the students for the ever-expanding field of Electronics and Computer Engineering. The curriculum is directed towards the major applications such as Programming, Data Science, embedded systems and Internet of things (IoT), and Very Large-Scale Integration (VLSI). We believe that, many creative opportunities exist at the boundaries of Electronics and Computer Engineering, Computer Science engineering and Electronics and Communication Engineering, so accordingly cross-training schedule for the students across disciplinary boundaries is planned. The normal duration of course is four years. Initially in the curriculum of Electronics and Computer Engineering few courses are in common with the other engineering programmes. Thereafter, for 3<sup>rd</sup> and 4<sup>th</sup> year, the programme is structured into different verticals to allow customization by individual students based on their own personal perspectives. The Programme Educational Objectives (PEOs) and Programme Outcomes (POs) of Electronics and Computer Engineering are summarized as below:

## **1.1 Programme Educational Objectives (PEOs):**

**PEO1:** The graduating students would be able to make choice to go for a professional career in core technical domain or to pursue higher studies in the field of Electronics and Computer Engineering and other related areas and succeed in their academic and research careers.

**PEO2:** The graduating students would be able to solve socially relevant engineering problems by designing/developing the products with the help of acquired multidisciplinary knowledge.

**PEO3:** The graduating students would exhibit a good command over interpersonal communication skills, leadership and team work, and possess ethical values in their chosen professional careers.

**PEO4:** The graduating students would be ready to serve the society at local, national and international level with the help of life-long learning accomplished for professional development through practical training, courses by international faculty and specialized certifications.

## **1.2 Programme Outcomes (POs):**

**PO1:** Possess an ability to apply the knowledge of mathematics science, engineering fundamentals, and engineering specialization to the solution of complex engineering problems.

**PO2:** Possess an ability to identify, formulate, review research literature, and analyze complex engineering problems using first principles of mathematics, natural sciences, and engineering sciences.

**PO3:** Possess an ability to design solutions for complex engineering problems and design system components or processes to meet the specific needs with appropriate consideration of the public health and safety, the cultural, societal, and environmental sustainability.

**PO4:** Possess an ability to Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions



**PO5:** Possess an ability to create, elect, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

**PO6:** Possess an ability to apply reasoning informed by the contextual knowledge of societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practices.

**PO7:** To understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge and need for sustainable development.

**PO8:** Possess an ability to apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

**PO9:** Possess an ability to function effectively as an individual and as a member or leader in diverse teams and in multidisciplinary settings.

**PO10:** Possess an ability to communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

**PO11:** Possess an ability to demonstrate knowledge and understanding of the engineering, management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

**PO12:** Possess an ability to recognize the need and have ability to engage in independent and lifelong learning in the broadest context of technological change.

**PO13:** Possess the capability and skills necessary for application and installation of Electronics and Computer systems.

**PO14:** Possess in-depth knowledge of modern design tools to solve real-life problems in the field of Electronics and Computer Engineering.

In B.E. Electronics and Computer Science Engineering Programme, the programme educational objectives (PEOs) are well-designed on the mission of providing the graduating students with knowledge and expertise required for professional practices in engineering and the necessary technical skills for working in corporate industries. The graduating students are prepared for participation in a global environment, where number of opportunities exists for students to connect with one another across the world. Each year, professors from different universities across the globe visits Chitkara University to provide international exposure to students. During the Global Week (GW), cross-cultural competence and knowledge sharing between the students and faculties on both sides are infused, which also facilitates the social cultural immersion programs, helping students in their international careers. Engineering Projects in Community Service-(EPICS) course is offered to students which involves service learning, and reflecting upon an organized activity to benefit their communities, in order to deepen their knowledge of a topic or perspective they have learned about in the classroom. Aiming at developing student's personality through community service, NSS activities are offered to students to instill the idea of social welfare and to provide service to society without bias. To enrich student's interpersonal skills, variety of extracurricular activities have



been inculcated in the course curriculum in the form of national level technical and cultural festivals such as EXPLORE and Rangrez respectively on a yearly basis. A vital role is played by the department for overall grooming of the student through organizing industrial visits, workshops and technical quizzes/debates and project showcase competitions by technical societies (IETE, and IEI) and department cultural club (E-Buzz). The students are offered to participate or organize such events. These value-added activities have been designed taken into account various Programme Objectives (POs) such as PO3, PO4, PO7, PO8, PO9, and PO10, and have been in accordance with all the mentioned Programme Educational Objectives (PEOs). By offering sports related activities, the overall purpose of service-learning is achieved with an emphasis on good health and well-being.

The programme also aims at achieving the sustainable development goals set up by the United Nations. PO5, PO10, PO13 and PO14 promote development for sustainable society, which depends on three aspects: Economic Forces, Public policy changes, Changes in Lifestyle. An engineer can contribute to sustainable development; as the role of technology in the transition to a sustainable society is a central one. Present day technologies include Cloud Computing, Internet of Things (IoT), Artificial Intelligence, Augmented Reality (AR), Virtual Reality (VR), and Robotic Process Automation. The Programme of Electronics and Computer Engineering is designed to build innovators, entrepreneurs, leaders and responsible citizens with the above-mentioned skills and knowledge that will help them contribute to achieving the UN 2030 agenda.

PEOs and POs are designed and oriented to meet the mission of university. The PEOs ensure that the graduating students are well equipped with technical knowledge, command over communication skills, leadership qualities, and accomplishment of life-long learning to apply for solving the relevant engineering problems in community at local, national and international level, thereby helping establish a balanced social and professional environment. Thus, the objective of the programme is to produce high quality analytic and creative minded electronics engineers to transform the society into knowledgeable, avant-grade and sustainable society.

## **1.4 Programme Constitution:**

- The courses offered in first year are applied basic engineering subjects.
- Programme in second year have core and elective electronics subjects and is structured keeping in mind the requirements of exams like GATE, UPSC, and IES.
- In year 3 and 4, the programme is structured in form of specialization track. Verticals are offered in the specialization track that allows students to customize their preferences for subjects, based on individual interest and carrier options. The verticals include IoT and Embedded Systems, Programming, Data Science, VLSI Design and Verification, and Core Full Stack. These help the students to gain deeper knowledge and skills in the selected area.
- We follow outcome-based education and programme outcomes are mapped with course outcomes. For details see the appendix A of mapping report.



## **1.5 Placement Opportunities:**

Electronics and Computer Engineering Graduates have tremendous employment opportunities in design, development, research, marketing, Customer support, Sales and testing areas in industries of:

Software development and testing, Database Management, Machine Learning, Computing, Bio medical instrumentation, Health engineering, Embedded System design, VLSI design, Human-Computer Interaction and Hardware design and testing.

## 2. Eligibility for Admission

The student seeking admission in BE programme should have minimum 60% marks in 12th grade or equivalent exam as declared by JEE, with Mathematics, and Physics as compulsory subjects. He / She should have appeared in JEE. The admission is based purely on merit. During admission process, the university follows reservation policy as decided by the State.

## 3. Programme Duration

The duration of the BE programme is four years - divided into 8 semesters. The maximum duration permissible for completion of B.E. programme is shown in table 1:

## Table 1: Duration of the Programme

| Normal duration of the degree | Maximum time allowed for |
|-------------------------------|--------------------------|
| programme                     | completion of programme  |
| 4 years                       | 4+2 years                |

## 4. Pedagogical Aspects

The structural layout of the programme and its courses requires that each course be divided in lecture, tutorial and practical sessions. Duration of each session of the course is 55 minutes.

Lecture sessions: Lectures are delivered by traditional – Chalk& Talk method, supplemented by modern Information Communication Technology (ICT) methods. The students are encouraged to ask questions and involve in group discussion to the extent allowed by the faculty. In some subjects where case study-based methodology is adopted, the lectures are supplemented by discussions on case studies.

Tutorial Sessions: The tutorial sessions are small groups of students interacting with the faculty, solving application oriented and analytical problems. The tutorial sessions are very interactive and inculcate problem solving skills in the students.

Lab / Practical Sessions: During lab / practical sessions, the students work on prescribed list of experiments and do what they have learnt in the Lecture / Tutorial sessions.

Projects: The students identify their team mates (maximum 4 students per team) and work on a unique project allotted to them by faculty / group of faculty members. The projects are allotted to them either at the start of semester or at a later stage (but not later than Sessional test I). Projects are designed by considering real world challenges. Thus, the project statements are made in such a way that the students while working on these projects apply the concepts learned so far and the deliverables are multi-faceted.



## 5. Programme Structure

The various courses of Electronics and Computer Engineering programme are categorized in terms of their academic affinity or their functional objectives as Basic Science course (BSC), Engineering Science course (ESC) Programme Core Courses (PCC), Programme Elective Course (PEC), Open elective course (OEC), Mandatory course (MC), Project work (PW), Generic course (GC), Specialization Courses, and Special Courses. PCC are compulsory set of courses. There is specified number of elective courses classified as PEC or OEC. The students are offered a pool of different elective courses (Based on different verticals) out of which they will choose the course/courses as per their interest.

## **Special Courses**

Integrated Project: Every year, the students identify their team mates (at the most 4 students per team) and work on a unique integrated project allotted to them by faculty / group of faculty members. The projects are allotted to them either at the start of each semester or at a later stage (but not later than Sessional test I) in the semester. Integrated projects are designed by the faculty keeping in mind the courses which the students have studied so far and are currently studying. Thus, the project statements are made in such a way that the students while working on these projects apply the concepts learned so far and the deliverables are multi-faceted. The students work on the Integrated Project during their lab hours.

Industry Oriented skills are imparted to students in following courses:

IOHT (Industry Oriented Hands-on Training)

IOHC (Industry Oriented Hands - on Courses)

IOHE (Industry Oriented Hands on Experience)

IOHT: IOHT are very basic and low level industry skills which are essential for the students to build up their engineering mindset.

IOHC: IOHC are short term skill oriented courses and are more often than not, offered in association with an industry. They aim to train the students in a specific skill / platform/ tool/ technology which are state-of-art. It fills the gap between present curricula and the specific industry needs. It also circumvents the problem of revising the curricula time and again, to align it to current industry requirements. The short duration IOHCs (2-5 days) can be offered during the academic semester and long duration IOHCs (4-6weeks) are offered as summer courses. Summer IOHCs can be taken up at the campus or at the Industry. The IOHC may result in certification by Industry in a specific skill set. Dean of the Department has the authority to offer and assign IOHCs, as the case may be, for appropriate semesters or during summer, at various industries or at the campus. The students are may be given freedom to choose his/her own IOHC, but the decision of Dean is final while allotment.

IOHE: IOHE is a real experience at the industry. This may or may not be in a specific skill set. Dean of the Department and the Office of External affairs (optional) has the authority to assign IOHEs, at appropriate industries. The students are given freedom to choose his/her own IOHE, but the decision of Dean is final while allotment.



GW: Global week is one-week programme where students are provided international exposure. Faculty from different part of world teaches the students for one week as per their expertise.

|                 |                    | Table 2: Course Scheme                   |              |         |  |  |
|-----------------|--------------------|------------------------------------------|--------------|---------|--|--|
|                 |                    | YEAR-01                                  |              |         |  |  |
|                 |                    | SEMESTER 1                               |              |         |  |  |
| Course category | <b>Course Code</b> | Title of course                          | L-T-P Credit |         |  |  |
| BSC             | AM101              | Engineering Mathematics – I              | 4-1-0 5      |         |  |  |
| BSC             | PH102              | Engineering Physics                      | 3-1-0        | 4       |  |  |
| BSC             | PH103              | Engineering Physics Lab                  | 0-0-2        | 1       |  |  |
| ESC             | EC101              | Basics of Electronics Engineering        | 3-1-0        | 4       |  |  |
| ESC             | EC102              | Basics of Electronics Engineering Lab    | 0-0-2        | 1       |  |  |
| ESC             | CS101              | Introduction to C Programming            | 0-0-10       | 5       |  |  |
|                 |                    | Total                                    | 27           | 20      |  |  |
|                 |                    | YEAR-01                                  |              |         |  |  |
|                 |                    | SEMESTER-2                               |              |         |  |  |
| Course category | <b>Course Code</b> | Title of course                          | L-T-P        | Credits |  |  |
| BSC             | AM102              | Engineering Mathematics – II             | 3-1-0        | 5       |  |  |
| ESC             | EE101              | Basic of Electrical Engineering          | 3-1-0        | 4       |  |  |
| ESC             | EE102              | Basics of Electrical Engineering Lab     | 0-0-2        | 1       |  |  |
| ESC             | CS102              | Object Oriented Programming using<br>C++ | 0-0-8        | 5       |  |  |
| ESC             | ME102              | Engineering Graphics                     | 3-1-0        | 4       |  |  |
| ESC             | ME152              | Manufacturing Practices                  |              |         |  |  |
| ESC             | ME153              | Engineering Graphics lab                 | 0-0-2        | 1       |  |  |
| PCC             | EC105              | Digital Electronics & Logic Design       | 3-0-0        | 3       |  |  |
| PCC             | EC106              | Digital Electronics & Logic Design Lab   | 0-0-2        | 1       |  |  |
| MC              | HR101              | Human Rights & Values                    | 2-0-0        | NC      |  |  |
| PW              | AS101              | Engineering Exploration                  | 0-0-2        | 3       |  |  |
|                 |                    | Total                                    | 35           | 29      |  |  |
|                 |                    | YEAR-02                                  |              |         |  |  |
|                 | -                  | SEMESTER 3                               |              |         |  |  |
| Course category | <b>Course Code</b> | Title of course                          | L-T-P        | Credits |  |  |
| PCC             | EC107              | Analog Electronics                       | 3-1-0        | 3       |  |  |
| PCC             | EC108              | Analog Electronics Lab                   | 0-0-2        | 1       |  |  |
| PCC             | EC109              | Microprocessor & Microcontroller         | 3-1-0        | 3       |  |  |
| PCC             | EC110              | Microprocessor & Microcontroller Lab     | 0-0-2        | 1       |  |  |
| PCC             | EC111              | Signals & Systems                        | 3-1-0        | 3       |  |  |
| PCC             | EC113              | Measurement and Virtual Instrumentation  | on 0-0-2     | 1       |  |  |
|                 | •                  | •                                        |              |         |  |  |

## **Programme Structure of BE Electronics and Computer Science Engineering**

Chitkara University School of Engineering and Technology (ECE Department)



|                   |                                          |       | lab                                |                        |           |            |  |  |  |  |  |  |
|-------------------|------------------------------------------|-------|------------------------------------|------------------------|-----------|------------|--|--|--|--|--|--|
| PCC               | EC135 Network Analysis & Control Systems |       |                                    |                        | 3-1-0     | 3          |  |  |  |  |  |  |
| ESC               | CS114                                    |       | Data Structures                    | -                      | 0-0-8     | 4          |  |  |  |  |  |  |
| MC                | DM101                                    |       | Disaster Manageme                  | ent                    | 2-0-0     | NC         |  |  |  |  |  |  |
|                   |                                          |       | Total                              |                        | 32        | 19         |  |  |  |  |  |  |
|                   |                                          |       |                                    |                        |           |            |  |  |  |  |  |  |
| SEMESTER 4        |                                          |       |                                    |                        |           |            |  |  |  |  |  |  |
| Course category   | Course<br>Code                           | Tit   | tle of course                      |                        | L-T-P     | Credits    |  |  |  |  |  |  |
| PCC               | EC114 Microelectronic Circuits 3         |       |                                    |                        |           | 3          |  |  |  |  |  |  |
| PCC               | EC115                                    | Mi    | croelectronic Circui               | ts Lab                 | 0-0-2     | 1          |  |  |  |  |  |  |
| PCC               | EC118                                    | Di    | gital Signal Processi              | ng                     | 3-1-0     | 3          |  |  |  |  |  |  |
| PCC               | EC119                                    | Di    | gital Signal Processi              | ng Lab                 | 0-0-2     | 1          |  |  |  |  |  |  |
| PCC               | EC129                                    | Ap    | plication developme                | ent using Python       | 0-0-8     | 4          |  |  |  |  |  |  |
| PCC               | EC137                                    | En    | nbedded system& Io                 | Т                      | 3-1-0     | 3          |  |  |  |  |  |  |
| PCC               | EC138                                    | En    | nbedded system & Io                | oT Lab                 | 0-0-2     | 1          |  |  |  |  |  |  |
| PW                | EC130                                    |       | egrated Project                    |                        | 2         |            |  |  |  |  |  |  |
| PCC               | CS115                                    | Op    | 4-0-0                              | 4                      |           |            |  |  |  |  |  |  |
|                   | Total                                    |       |                                    |                        |           |            |  |  |  |  |  |  |
|                   | YEAR-03                                  |       |                                    |                        |           |            |  |  |  |  |  |  |
| Courses are being | g offered acco                           | ordiı | ng to Specialization<br>Batch 2018 | Tracks starting from   | Fifth Sen | nester for |  |  |  |  |  |  |
|                   |                                          |       | SEMESTER-                          | 5                      |           |            |  |  |  |  |  |  |
| Course category   | Course Co                                | de    | Title                              | e of course            | L-T-P     | Credits    |  |  |  |  |  |  |
| PCC               | EC123                                    |       | Analog and Digital                 | 3-1-0                  | 3         |            |  |  |  |  |  |  |
| PCC               | EC124                                    |       | Analog and Digital                 | 0-0-2                  | 1         |            |  |  |  |  |  |  |
| PCC               | EC251                                    |       | Database Managem                   | 0-0-8                  | 4         |            |  |  |  |  |  |  |
| МС                | ES101                                    |       | Environmental Scie                 | ences                  | 2-0-0     | 2          |  |  |  |  |  |  |
| MC                | GW                                       |       | Global Week                        |                        |           | NC         |  |  |  |  |  |  |
| PEC               |                                          |       | PE-1                               | (As per specialization | 3-1-0     | 3          |  |  |  |  |  |  |
| PEC               |                                          |       | PE-1 lab                           | track)                 | 0-0-2     | 1          |  |  |  |  |  |  |
| PEC               |                                          |       | PE-2                               |                        | 3-1-0     | 3          |  |  |  |  |  |  |
| PEC               |                                          |       | PE-2 lab                           | 1                      | 0-0-2     | 1          |  |  |  |  |  |  |
| PEC               |                                          |       | PE-3                               | 4-0-0                  | 4         |            |  |  |  |  |  |  |
| FEC               | The         Total         32         22  |       |                                    |                        |           |            |  |  |  |  |  |  |
| F EC              |                                          |       |                                    |                        |           |            |  |  |  |  |  |  |
|                   |                                          |       | YEAR-03                            |                        |           |            |  |  |  |  |  |  |
|                   |                                          |       |                                    |                        |           |            |  |  |  |  |  |  |
| Course category   | Course<br>Code                           |       | YEAR-03                            |                        | L-T-P     | Credits    |  |  |  |  |  |  |

Chitkara University School of Engineering and Technology (ECE Department)



|                                      |                    | SW                                      | vitching       |                    |                      |      |       |           |
|--------------------------------------|--------------------|-----------------------------------------|----------------|--------------------|----------------------|------|-------|-----------|
| PW                                   | EC131              | Μ                                       | ajor Proj      | 4-0-0              | 4                    |      |       |           |
| OEC                                  |                    | O                                       | oen Elect      | 0-0-8              | 4                    |      |       |           |
| OEC                                  |                    | O                                       | oen Elect      | ive-2              |                      | 4    | 4-0-0 | 4         |
| PEC                                  |                    |                                         | E-4            |                    |                      | 1    | 3-1-0 | 3         |
| PEC                                  |                    | PE                                      | E-4 lab        | (As per s          | pecialization track  |      | 0-0-2 | 1         |
| PEC                                  |                    | PE                                      | E-5            |                    |                      | 4    | 4-0-0 | 4         |
|                                      |                    | To                                      | otal           | <u> </u>           |                      |      | 30    | 24        |
|                                      |                    |                                         | Sch            | eme-I              |                      |      |       |           |
|                                      |                    |                                         |                | AR-04              |                      |      |       |           |
|                                      |                    |                                         |                | 0                  | ester track          |      |       | ~~~~~     |
|                                      |                    |                                         |                |                    | e student has the    |      |       |           |
| track or semest<br>designated indust |                    | -                                       |                |                    | t take up a yearlo   | 0    |       | •         |
|                                      |                    |                                         |                |                    | at a designated in   |      |       | ampus and |
|                                      | the other senie    |                                         | -              | ESTER-7            | at a designated if   | luus |       |           |
| <b>Course category</b>               | Course Co          | de                                      |                |                    | of course            |      | L-T-P | Credits   |
| PCC                                  |                    | AM104 Numerical Methods and Statistical |                |                    |                      |      | 3-1-0 | 3         |
|                                      |                    | Techniques                              |                |                    |                      |      |       |           |
| MC                                   | CS501              |                                         | Cyber Security |                    |                      |      |       | 3         |
| PW                                   | EC132              |                                         | Seminar        |                    |                      |      | 3-1-0 | 1         |
| PEC                                  |                    |                                         | PE-6           |                    | (As per              |      |       | 3         |
| PEC                                  |                    |                                         | PE-6 lab       | )                  | Specialization track |      | 0-0-2 | 1         |
| PEC                                  |                    |                                         | PE-7           |                    |                      |      | 4-0-0 | 4         |
|                                      |                    |                                         |                | r                  | Fotal                |      | 17    | 15        |
|                                      |                    |                                         | YE             | AR-04              |                      |      |       | <b>I</b>  |
|                                      | -                  |                                         |                | ESTER-8            |                      |      | •     |           |
| Course category                      | Course Code        | Title                                   | e of cour      | se                 |                      |      | L-T-P | Credits   |
| PW                                   | EC133              | Indu                                    | stry Or        | iented H           | ands on Experie      | ence | 24    | 15        |
|                                      |                    | (Six                                    | Month I        | ndustrial T        | Training)            |      | weeks |           |
|                                      |                    |                                         | Sche           | eme –II            |                      |      |       | I         |
|                                      |                    |                                         | YE             | AR-04              |                      |      |       |           |
|                                      |                    | For st                                  |                | oing Co-o          | p Track              |      |       |           |
| ~                                    |                    |                                         |                | ESTER-7            |                      |      | _     | ~         |
| Course<br>category                   | <b>Course Code</b> | Title                                   | of cours       | e                  |                      | L-T- | -P    | Credits   |
| PW                                   | EC134              | Co-or                                   | o Project      | at Industry        | y: Module I          | 24 w | veeks | 15        |
|                                      |                    |                                         |                |                    |                      |      |       |           |
|                                      |                    | For st                                  |                | AR-04<br>oing Co-o | n Track              |      |       |           |
|                                      |                    | ror su                                  |                | STER- 8            |                      |      |       |           |
|                                      | Course Code        | Title                                   | of course      |                    |                      | L-T  | -P    | Credits   |
| Course<br>category                   | Course Code        | Title                                   |                |                    |                      | L-T  | -P    | Cr        |



| PW          | EC136           | Co-op Project at Industry: Module II       | 24 weeks | 15        |
|-------------|-----------------|--------------------------------------------|----------|-----------|
|             |                 |                                            |          |           |
|             | Entreprene      | eurial Skill development / Start-up Activi | ty       |           |
| Course Code | Title of course |                                            | L-T-P    | Credits   |
| ER101       | CEED Acceler    | ation Program (CAP) Cohort-II-Module I     | 0-0-4    | 3 credits |
| ER102       | CEED Accelera   | ation Program (CAP) Cohort-II-Module II    | 0-0-4    | 2 credits |

\* The student has a choice to opt for PE-7 (4 credits) and seminar (1 credit) or to choose entrepreneurial skill development /startup activity (5 credits).

\*\* L-T-P can be changed as per the teaching methodology used for the conduct of subject.

Disclaimer: The subjects (as in Table 4 and Table 5) being offered may change with respect to recommendation & approval of University Academic Authorities. The changes will be informed well in advance time to time.



| Table 3: List of Electives |
|----------------------------|
|----------------------------|

| Track | Track Name <del>s -</del> |       | nbedded                                        | VLSI  |                                                            | Program | nming                   | Data Science |                                | Core           | Core Full Stack                                                          |   |
|-------|---------------------------|-------|------------------------------------------------|-------|------------------------------------------------------------|---------|-------------------------|--------------|--------------------------------|----------------|--------------------------------------------------------------------------|---|
| PE    | PE1                       | EC237 | Sensor<br>and<br>Commun<br>ication<br>Protocol | EC125 | Digital<br>VLSI<br>Design                                  | EC258   | Core<br>JAVA            | EC260        | Busine<br>ss<br>Statisti<br>cs | EC116<br>EC117 | Linear<br>Integrated<br>Circuits<br>Linear<br>Integrated<br>Circuits lab | 4 |
|       |                           |       |                                                |       |                                                            |         |                         |              |                                | EC204<br>EC205 | Digital Image<br>Processing<br>Digital Image<br>Processing<br>Lab        | 4 |
|       |                           |       |                                                | EC126 | Digital<br>VLSI                                            | -       |                         |              |                                | EC206<br>EC207 | Digital<br>System<br>Design<br>Digital<br>System<br>Design Lab           | 4 |
|       | PE2                       | EC249 | IoT<br>applicati                               | EC220 | LAB<br>Low<br>Power                                        | EC261   | Introducti<br>on to     | EC259        | Data<br>analyti                | EC203          | Bio-medical electronics                                                  | 4 |
|       |                           |       | on<br>develop<br>ment                          | EC221 | VLSI<br>System<br>Design<br>Low<br>Power<br>VLSI<br>System | -       | Web<br>technolog<br>ies |              | cs                             | EC239          | Advance<br>Wireless<br>Communicati<br>on                                 | 4 |

Chitkara University School of Engineering and Technology (ECE Department)



|     |       |                                           |       | Design<br>lab                                                            |       |                                                |       |                                        |                |                                                         |   |
|-----|-------|-------------------------------------------|-------|--------------------------------------------------------------------------|-------|------------------------------------------------|-------|----------------------------------------|----------------|---------------------------------------------------------|---|
| PE3 | EC250 | Web<br>Develop<br>ment for<br>Iot         | EC224 | Mixed<br>Signal<br>Circuit<br>Design                                     | EC266 | Cloud<br>computin<br>g &<br>Virtualiza<br>tion | EC230 | Python<br>for<br>Data<br>Scienc<br>e   | EC242          | Nano<br>Electronics                                     | 4 |
| PE4 | EC217 | IOT and<br>Industrial<br>Applicati        | EC211 | High<br>Speed<br>VLSI                                                    | EC267 | Advanced<br>Web<br>technolog                   | EC262 | Machi<br>ne<br>learnin                 | EC208          | Electronic<br>System<br>design                          | 4 |
|     |       | on                                        | EC212 | Design<br>Circuits<br>High<br>Speed<br>VLSI<br>Design<br>Circuits<br>lab |       | ies<br>(server<br>side)                        |       | g                                      | EC213          | Information<br>Theory and<br>Coding                     | 4 |
| PE5 | EC241 | Cloud<br>Computi<br>ng for                | EC201 | Analog<br>Layout<br>Design                                               | EC268 | Android<br>Applicati<br>on                     | EC248 | Data<br>extract                        | EC214          | Introduction<br>to MEMs                                 | 4 |
|     |       | IoT                                       |       | Design                                                                   |       | developm<br>ent                                |       | ion &<br>Visual<br>ization             | EC215          | Introduction<br>to mobile<br>technology                 | 4 |
| PE6 | EC236 | Wearable<br>technolo<br>gy and<br>reality | EC234 | VLSI<br>Design<br>and<br>Verificati<br>on                                | EC262 | Machine<br>learning                            | EC263 | Advan<br>ced<br>Machi<br>ne<br>learnin | EC233<br>EC243 | Speech and<br>audio<br>Processing<br>Wireless<br>Sensor | 4 |
|     |       |                                           | EC235 | VLSI<br>Design<br>and                                                    |       |                                                |       | g                                      |                | Networks                                                |   |



|    |      |        |       | Verificati |             |                |             |          |   |    |
|----|------|--------|-------|------------|-------------|----------------|-------------|----------|---|----|
|    |      |        |       | on lab     |             |                |             |          |   |    |
|    | PE7  |        | EC244 | IC         |             |                | EC264       | Big Data | ı | 4  |
|    |      |        |       | fabricati  |             |                |             | Analytic | s |    |
|    |      |        |       | on and     |             |                |             | with     |   |    |
|    |      |        |       | Technol    |             |                |             | Ecosyste | e |    |
|    |      |        |       | ogy        |             |                |             | m        |   |    |
|    |      | EC222  |       |            |             | nd Satellite   |             |          |   | 4  |
|    |      | EC223  |       | Micro      | owave and   | d Satellite co | ommunicat   | tion lab |   |    |
|    |      | EC226  |       |            |             | communicati    |             |          |   | 4  |
|    |      | EC269  |       | Ar         | tificial In | telligence &   | expert sys  | stem     |   | 4  |
|    | OE-1 | EC270  |       |            |             | mputer Netw    |             |          |   | 4  |
|    |      | EC271  |       | Ot         | oject Orie  | nted Softwa    | re Enginee  | ering    |   | 4  |
|    |      | EC272  |       | 1          | Advanced    | l Programmi    | ng Concep   | ots      |   | 4  |
| OE |      | EC273  |       |            | Comput      | er system A    | rchitecture | <b>;</b> |   | 4  |
|    |      | EC227  |       | Prob       | ability Th  | neory and Ra   | andom Pro   | cesses   |   | 4  |
|    |      | GI101  |       | Nu         | umerical A  | Ability & log  | gical reaso | ning     |   | 4  |
|    | OE-2 | CL601  |       |            |             | Life skills    | 5           |          |   | 4  |
|    |      | EC252  |       |            | Sci         | entific comp   | outing      |          |   | 4  |
|    |      | EC274  |       | Busir      | ness Intell | igence and     | data wareh  | ousing   |   | 4  |
|    |      | EC228  |       |            | Pro         | ject Manage    | ement       |          |   | 4  |
|    |      | EC275  |       | Es         | ssentials c | of Informatic  | on Technol  | ogy      |   | 4  |
| MC |      | GW2001 |       |            |             | G-Visions      |             | •        |   | NC |



## 6. Assessment and Evaluation

The evaluation will be continuous and the weightage of various components are as given in Table 4 (For Theory courses) and in Table 5 (for Practical Courses), Table 6 (for Integrated Projects) and Table 7 (for Programming courses).

#### Table 4: Evaluation components for Theory Courses

| For Theory Courses                                                        |     |
|---------------------------------------------------------------------------|-----|
| Quizzes /Assignments/ Presentation/Class Test/ Open Book Test/ Case Study | 10  |
| Sessional Tests (STs)                                                     | 30  |
| End Term Examination                                                      | 60  |
| Total                                                                     | 100 |

There are three Sessional Tests (STs) for all theory papers, the average of best two are considered. The policy on the evaluation component – 'Quizzes / Tutorials / Assignments' is decided by the course coordinator and Dean and is announced separately for each course. The End Term examination for practical courses includes conduct of experiment and an oral examination (viva voce).

## Table 5: Evaluation Components for Practical Courses

| For Lab Courses             |     |
|-----------------------------|-----|
| Lab Performance / File work | 40  |
| Internal Viva – Voce        | 20  |
| End Term                    | 40  |
| Total                       | 100 |

## Table 6: Evaluation Components for Integrated Project

| For Integrated Projects                     |     |
|---------------------------------------------|-----|
| Performance / Presentation / Project report | 40  |
| Internal Viva – Voce                        | 20  |
| End Term – Project Display                  | 40  |
| Total                                       | 100 |

#### Table 7: Evaluation Components for Programming Courses

| For Programming Courses |     |
|-------------------------|-----|
| Internal Assessment     | 50  |
| End term                | 50  |
| Total                   | 100 |

The medium of examination is English.

**Criteria to Pass Examination**: Based on the marks obtained by the student in a particular course as described in tables above, the grade in that course is obtained, in accordance with the table 10.



## 7. <u>Rules for Attendance</u>

Students are expected to be regular in attending the classes. 75% attendance (of all held sessions – lectures, tutorials, lab) is compulsory in a course in order to be eligible for appearing in end term comprehensive examination. 10% concession in this mandatory requirement is possible only in extreme circumstances and at the sole discretion of the Vice Chancellor. 5% concession is possible only in case of extreme circumstances and at the sole discretion of the Bepartment. Students are encouraged for participating in co-curricular activities conducted by prestigious institutions at national/International level. Such students would be eligible for grant of special Duty Leaves (limited by a cap decided by the Vice Chancellor) to make up for the attendance, in case any class work is missed during this period. This privilege extended to the students will not be termed as right and is limited to just the attendance benefit. *There is no weightage for attendance in evaluation criteria*.

## 8. Grading System

The list of letter and non-letter grades, their applicability and connotation are given below: **Letter Grades** 

| % Marks Range of Total | Grade | Qualitative Meaning | <b>Grade Point</b> |
|------------------------|-------|---------------------|--------------------|
| 80-100                 | 0     | Outstanding         | 10                 |
| 70-79                  | A+    | Excellent           | 9                  |
| 60 - 69                | А     | Very Good           | 8                  |
| 55 - 59                | B+    | Good                | 7                  |
| 50-54                  | В     | Above Average       | 6                  |
| 45 - 49                | С     | Average             | 5                  |
| 40 - 44                | Р     | Pass                | 4                  |
| 0-39                   | F     | Fail                | 0                  |
|                        | Ι     | Incomplete          | 0                  |

#### Table 8: Grading scheme

If a student obtains grade P or above, he is declared pass in that subject. The grade F is equivalent to being fail in that subject, in the latter case, the student has to reappear in the end term examination of that subject, whenever its exam is conducted again with the regular examination, after payment of appropriate examination fee.

If the student is detained from appearing in the end term examination because of shortage of attendance in the regular semester or is absent in the end term exam, his grade in that subject is 'I', till he/she appears again in the end term examination and obtains a new grade.

The grade I (Incomplete) may be awarded in the following conditions:

- (i) Where a case of unfair means is pending, a 'Grade I' is awarded till the case is finalized.
- (ii) Where a case of indiscipline is pending, a 'Grade I' is awarded till the case is finalized.
- (iii) In cases of unfair means and indiscipline where the results for a particular examination are declared can be declared as null and void.
- (iv) In cases, where the student does not complete his course work because of some reason viz, shortage of attendance / is absent in the end term examination.

In case the grades are not received by the University as per the time schedule the, the Dean of department may make a specific authorization for the Course coordinator to report GA (Grade Awaited). The dean of department will also simultaneously advise Dean Examination about the estimated time by which the grades will be received. Whenever the report GA appears in the grade sheet, permission for further registration of such a student will be decided by Dean of School.

The Cumulative Grade Point Average (CGPA) denotes the overall performance of a student in all courses in which he is awarded letter grades. It is the weighted average of the grade points of all the letter grades received by the student from the time of his entry into the University.

## **Calculation of CGPA:**

The CGPA (calculated on a 10-point scale) would be used to describe the overall performance of a student (from the semester of admission till the point of reckoning) in all courses for which LETTER GRADES will be awarded. GPA will indicate the performance of student for any particular semester. Formulas for calculation of GPA and CGPA have been provided as below:

$$GPA_{i} = \frac{\sum_{j=1}^{n} C_{ij}G_{j}}{\sum_{j=1}^{n} C_{ij}} \qquad CGPA = \frac{\sum_{i=1}^{N} \left( GPA_{i} * \sum_{j=1}^{n} C_{ij} \right)}{\sum_{i=1}^{N} \left( \sum_{j=1}^{n} C_{ij} \right)}$$

Where n = number of subjects in the semester; N = number of semesters;  $GPA_i = GPA$  for the ith semester;  $C_{ij}$  = number of credits for the jth course in ith semester; and  $G_j$  = Grade point corresponding to the grade obtained in the jth course.

## Example to Understand the Calculation of GPA

Suppose a student is registered in four courses 'W', 'X', 'Y' and 'Z' in a particular semester as mentioned below in the Column - I of the table. Column - II in the table 11 depicts the number of credits, which those courses carried. At the end of the semester, student was awarded with the grades as mentioned in Column – III in the table given below. Column – IV indicates the corresponding grade weight. Column – V and Column – VI indicate essentially the Credit value and Grade Points for every course completed by a student in that particular semester.

| Courses in<br>which student<br>registered | Credits   | Letter<br>Grade | Grade<br>Value | Credit<br>Value | Grade<br>Points |
|-------------------------------------------|-----------|-----------------|----------------|-----------------|-----------------|
| (Col. I)                                  | (Col. II) | (Col. III)      | (Col. IV)      | (Col. V)        | (Col. VI)       |
| Course W                                  | 3         | B-              | 6              | 3 x 6           | 18              |
| Course X                                  | 3         | A-              | 8              | 3 x 8           | 24              |
| Course Y                                  | 3         | A+              | 10             | 3 x 10          | 30              |
| Course Z                                  | 2         | A+              | 10             | 2 x 10          | 20              |
| Total                                     | 11        |                 |                | Total           | 92              |

Table 9: Number of Credits and Courses



Thus, the total GPA of the student would be =

$$GPA = \frac{Total \ grade \ pts.}{Total \ no. of \ credits} = \frac{92}{11} = 8.36$$

Suppose the GPA of the student in two successive terms is 7.0 and 8.0 with respective course credits being 12 and 11, then the

$$CGPA = \frac{7 \times 12 + 8 \times 11}{12 + 11} = \frac{84 + 88}{23} = 7.48$$

#### 9. Promotion and Registration

Any bonafide student, who appears for the examination conducted by the University, shall be promoted to the next higher semester and shall carry forward all course(s) / subject(s) in which he/she is declared fail. The student shall have to pass all papers within stipulated maximum duration to qualify for the award of degree.

All students are eligible to register for next semester irrespective of number of backlogs unless if:

- 1) He/She has dues outstanding to the University, hostel, or any recognized authority or body of the University.
- 2) His/Her grade sheet in his immediately preceding term is withheld.
- 3) He/She has been specifically debarred or asked to stay away from that term.

Late registration may be granted in case a student fails to register on the stipulated date. Student failing to register on the specified day of registration will be allowed to register only after permission from Dean of the Department and after paying the stipulated late fee. Any student who has not registered will not be allowed to attend classes. The registration of the student may be cancelled, if at the later stage, it is found that the student is not eligible for registration due to following reasons:

- a) If the registration of a student in a course is not found to be in accordance with the regulations, his/her registration in that course will be cancelled and the grade obtained, if any, will be rejected.
- b) The registration of a student in a course or complete set of courses in a term can be cancelled by the concerned authority when he is found guilty in cases of unfair means, breach of discipline, etc. or when he/she persistently and deliberately does not pay his dues.
- c) Absence for a period of four or more weeks at a stretch during a term shall result in automatic cancellation of the registration of a student from all the courses in that term.

#### 10. Migration/Credit Transfer Policy

The following procedures will be followed for credit transfer for student under migration, studied in other Universities in India and Abroad:

"The credits earned by the student from the other universities in India or abroad shall be transferred as such. The Degree shall only be awarded to candidate subject to the condition



that student earned the minimum no. of credit defined by Academic Regulation/APG of the Programme run by the Chitkara University."

In case a student undergoes international exchange programme or internship for 1 semester/ 1 year, then the courses, credits and grades earned by the student in abroad during that period should be reflected on the grade card issued by the Chitkara University. The courses will be marked as (\*) on the grade card/transcript. The description of the (\*) will be "credits and grades as adopted university/institute name . . . . during international exchange programme.

## 11. Eligibility to Award the Degree

A student is deemed to have fulfilled the requirement of graduation for a degree (single or dual degree) or a higher level degree when he has:

- (i) Cleared all Courses prescribed for the programme.
- (ii) Earned the minimum credits required for the programme as described in the "APG"
- (iii) Obtained the minimum CGPA 4.5 for the award of degree in the UG programmes
- (iv) Satisfied all requirements of these regulations.The minimum credits to be earned are given in table 10.

| Course / Year | <b>BE in Electronics and Computer Engineering</b> |
|---------------|---------------------------------------------------|
| Year I        | 49                                                |
| Year II       | 41                                                |
| Year III      | 46                                                |
| Year IV       | 30                                                |
| Total         | 166                                               |

Table 10: Minimum Credits to be Earned for Award of Degree in BE

It is mandatory for the student to earn minimum 166 credits by clearing mandatory core and elective courses. The student can choose electives of his interest from the list of electives attached in the scheme. The maximum credits that can be earned by student are 172 if he avails opportunity offered by university in the form of Generic Courses (GC) that falls in category of extracurricular activities/NCC/NSS/vocational courses/sports etc.

A student is deemed to have become eligible for the degree if, in addition to satisfying the above requirements, he has:

- (i) Satisfied all rules of evaluation
- (ii) No case of indiscipline or unfair means is pending against him.

However, in case of a student having outstanding dues against him to be paid to the University, Hostel or any other recognized organ of the University, his degree will be withheld until the said dues are cleared. Under extreme circumstances where gross violation of graduation is detected at a later stage, the Academic Council may recommend the Governing Body to recall the degree already awarded.



## 12. Programme Overview

| Course | Category    |    | Credits |     |    |    |    |      |          |      |       |        |                    |
|--------|-------------|----|---------|-----|----|----|----|------|----------|------|-------|--------|--------------------|
| Catego |             | Ι  | II      | III | IV | V  | VI | V    | VII VIII |      |       | Total  |                    |
| ry     |             |    |         |     |    |    |    |      |          |      |       |        |                    |
|        |             |    |         |     |    |    |    | Sche | Sche     | Sche | Sche  | Sche   | Sche               |
|        |             |    |         |     |    |    |    | me I | me II    | me I | me II | me I** | me                 |
|        |             |    |         |     |    |    |    |      |          |      |       |        | $\mathrm{II}^{**}$ |
| BSC    | Basic       | 10 | 5       | -   | -  | -  | -  | -    | -        | -    | -     | 15     | 15                 |
|        | Science     |    |         |     |    |    |    |      |          |      |       |        |                    |
|        | Course      |    |         |     |    |    |    |      |          |      |       |        |                    |
| ESC    | Engineering | 10 | 17      | 4   | -  | -  | -  | -    | -        | -    | -     | 31     | 31                 |
|        | Science     |    |         |     |    |    |    |      |          |      |       |        |                    |
|        | Course      |    |         |     |    |    |    |      |          |      |       |        |                    |
| PCC    | Programme   | -  | 4       | 15  | 20 | 8  | 4  | 3    | -        | -    | -     | 54     | 51                 |
|        | Core        |    |         |     |    |    |    |      |          |      |       |        |                    |
|        | Course      |    |         |     |    |    |    |      |          |      |       |        |                    |
| PEC    | Programme   | -  | -       | -   | -  | 12 | 8  | 8    | -        | -    | -     | 28     | 20                 |
|        | elective    |    |         |     |    |    |    |      |          |      |       |        |                    |
|        | Course      |    |         |     |    |    |    |      |          |      |       |        |                    |
| OEC    | Open        | -  | -       | -   | -  | -  | 8  | -    | -        | -    | -     | 8      | 8                  |
|        | Elective    |    |         |     |    |    |    |      |          |      |       |        |                    |
|        | Course      |    |         |     |    |    |    |      |          |      |       |        |                    |
| MC     | Mandatory   | -  | -       | -   | -  | 2  | -  | 3    | -        | -    | -     | 5      | 2                  |
|        | course      |    |         |     |    |    |    |      |          |      |       |        |                    |
| PW     | Project     | -  | 3       | -   | 2  | -  | 4  | 1    | 15       | 15   | 15    | 25     | 39                 |
|        | work        |    |         |     |    |    |    |      |          |      |       |        |                    |
| GC     | Generic     | -  | -       | -   | -  | -  | -  | _    | -        | -    | -     | -      | -                  |
|        | Course*     |    |         |     |    |    |    |      |          |      |       |        |                    |
| ,      | Total       |    |         |     |    | •  | •  |      | •        | •    | •     | 166    | 166                |
|        |             |    |         |     |    |    |    |      |          |      |       |        |                    |

Table 11: Break up of Semester

\* Generic Courses (as in Table 11) are not mandatory to opt.

\*\* Scheme I is 6 months Training track and Scheme II is Co-op Track

|--|

| S. No. | Course Code | Name of the Course           | Credits |
|--------|-------------|------------------------------|---------|
| 1      | AM101       | Engineering Mathematics- I   | 5       |
| 2      | AM102       | Engineering Mathematics – II | 5       |
| 3      | PH102       | Engineering Physics          | 4       |
| 4      | PH103       | Engineering Physics Lab      | 1       |



| Course                                                                                    | Course Name                                                                                                                                   | L-T-P                                                                  | Credits      | Pre-          |  |  |  |  |  |
|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|--------------|---------------|--|--|--|--|--|
| Code                                                                                      | requisite                                                                                                                                     |                                                                        |              |               |  |  |  |  |  |
| AM101                                                                                     | 01 Engineering Mathematics- I 4-1-0 5 NIL                                                                                                     |                                                                        |              |               |  |  |  |  |  |
| Course Ou                                                                                 | tcomes (CO)*:                                                                                                                                 |                                                                        |              |               |  |  |  |  |  |
| CO1:                                                                                      | Use the matrices to present mathema                                                                                                           | tical soluti                                                           | ons in a     | concise and   |  |  |  |  |  |
|                                                                                           | informative manner to the problems related                                                                                                    | ed to linear                                                           | equations.   |               |  |  |  |  |  |
| CO2:                                                                                      | Solve problems related to local extrem                                                                                                        | Solve problems related to local extreme values of functions of several |              |               |  |  |  |  |  |
|                                                                                           | variables, related application problems using Lagrange multipliers and<br>examine the conditions for the existence of absolute extreme values |                                                                        |              |               |  |  |  |  |  |
|                                                                                           | examine the conditions for the existence of                                                                                                   | examine the conditions for the existence of absolute extreme values.   |              |               |  |  |  |  |  |
| CO3:                                                                                      | Apply the principles of Integral Calcul                                                                                                       | us to solve                                                            | e a variety  | of practical  |  |  |  |  |  |
|                                                                                           | problems in Engineering and applied Scie                                                                                                      | ences.                                                                 |              |               |  |  |  |  |  |
| CO4:                                                                                      | Employ appropriate regression mod                                                                                                             | dels in c                                                              | letermining  | g statistical |  |  |  |  |  |
|                                                                                           | relationships through interpretation w                                                                                                        | ith the h                                                              | elp of pr    | obability &   |  |  |  |  |  |
|                                                                                           | distributions and hypothesis testing for m                                                                                                    | eans, varia                                                            | nces and p   | roportions of |  |  |  |  |  |
|                                                                                           | large as well as small data.                                                                                                                  |                                                                        |              |               |  |  |  |  |  |
| *The mapp                                                                                 | ing of CO/PO attainment/Graduate Attribute                                                                                                    | s are at App                                                           | pendix-A     |               |  |  |  |  |  |
| Review of                                                                                 | matrices and determinants, Elementary op                                                                                                      | perations, ra                                                          | ank, Inver   | se of matrix  |  |  |  |  |  |
| (using rank                                                                               | x), Normal form, Cayley Hamilton theorem                                                                                                      | m (without                                                             | proof), S    | olution of a  |  |  |  |  |  |
| system of                                                                                 | linear equations by using rank, Characteris                                                                                                   | stics equati                                                           | ons, Eiger   | n values and  |  |  |  |  |  |
| vectors, Di                                                                               | agonalization, Canonical form, Quadratic for                                                                                                  | orm. Curve                                                             | Tracing:     | curve tracing |  |  |  |  |  |
| (Cartesian                                                                                | and polar curves)- Cissoid, cardiod, Le                                                                                                       | eminscate,                                                             | Folium o     | f Descartes   |  |  |  |  |  |
| Three/Four                                                                                | Leaved Rose, Limacon. Introduction to Parti                                                                                                   | al Derivativ                                                           | ves: Functi  | on of severa  |  |  |  |  |  |
| variables, L                                                                              | imit and continuity Partial Differentiation, E                                                                                                | Euler's Theo                                                           | orem, Tota   | l derivatives |  |  |  |  |  |
| Error & Ap                                                                                | proximation, Tangent and Normal. Partial D                                                                                                    | Perivative of                                                          | f Composi    | te Functions  |  |  |  |  |  |
|                                                                                           | nctions, Jacobians, Taylor's Series Expans                                                                                                    |                                                                        |              |               |  |  |  |  |  |
| two variabl                                                                               | es). Application: Maxima and Minima of fu                                                                                                     | nctions of t                                                           | wo and the   | ee variables  |  |  |  |  |  |
| Lagrange's                                                                                | method of Undetermined Multipliers. Curv                                                                                                      | ve tracing,                                                            | Introductio  | on to Double  |  |  |  |  |  |
| Integration                                                                               | using Cartesian & polar coordinate, Chang                                                                                                     | ge of order                                                            | in double    | e integration |  |  |  |  |  |
| Introduction                                                                              | n to Triple Integration, Change of variables i                                                                                                | in Polar, Cy                                                           | lindrical a  | nd Spherical  |  |  |  |  |  |
|                                                                                           | s, Applications of multiple integral to find                                                                                                  |                                                                        | •            |               |  |  |  |  |  |
| Application                                                                               | is of multiple integral to find Volume, Mom                                                                                                   | ent of Iner                                                            | tia, Centro  | id, Center of |  |  |  |  |  |
| Gravity, Im                                                                               | proper integrals of first and second kind, Sp                                                                                                 | ecial Funct                                                            | ions: Beta   | and Gamma     |  |  |  |  |  |
| functions. Vector Function (Derivative and integral), tangent to the curve, Unit tangent, |                                                                                                                                               |                                                                        |              |               |  |  |  |  |  |
|                                                                                           | Vector Field, Gradient and its Physical Interp                                                                                                |                                                                        |              |               |  |  |  |  |  |
| 0                                                                                         | and its Physical Interpretations, Curl                                                                                                        |                                                                        | •            | -             |  |  |  |  |  |
|                                                                                           | of Gradient, Divergence and Curl, Line Inte                                                                                                   |                                                                        |              |               |  |  |  |  |  |
|                                                                                           | eorem in the Plane (without proof) and appli                                                                                                  |                                                                        |              |               |  |  |  |  |  |
| proof) and                                                                                | applications, Gauss Divergence Theorem (wi                                                                                                    | ithout proof                                                           | f) and appl  | ications.     |  |  |  |  |  |
| Suggested                                                                                 | Books:                                                                                                                                        |                                                                        |              |               |  |  |  |  |  |
| • "Ad                                                                                     | vanced Engineering Mathematics", Erwin K                                                                                                      | reyszig, W                                                             | iley India I | Pvt. Ltd.     |  |  |  |  |  |
|                                                                                           |                                                                                                                                               | ~ • •• ~~                                                              |              |               |  |  |  |  |  |

- "Engineering Mathematics", Srimanta Pal & Subodh C. Bhunia, Edition 2015, Oxford University Press.
- "The Engineering Mathematics", 2nd Ed., Chitkara University Publication, Vol. I.

- "Higher Engineering Mathematics", B.V. Ramana, Tata McGraw-Hill Education.
- "Advanced Engineering Mathematics", R.K. Jain and S.R.K. Iyengar, Alpha Science International Ltd.
- "Higher Engineering Mathematics", B.S. Grewal, Khanna Publications.
- "A text book of Engineering Mathematics", N. P. Bali and Manish Goyal, Laxmi Publications.
- "Vector Analysis with applications", by MD. Ali Ashraf, MD. Abdul Khaleq Hazra, Published by New Age International (New Delhi).
- "Calculus", by Howard Anton, Irl Bivens Stephens Davis.
- "Advanced Engineering Mathematics", H.C. Taneja, I.K. International, Vol I.

| Course Code                                                              | Course Name                                                                 | Course Name         L-T-P         Credits         Pre-requisite |              |                        |  |  |  |  |  |  |
|--------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------|--------------|------------------------|--|--|--|--|--|--|
| AM102                                                                    | Engineering4-1-05Engineering                                                |                                                                 |              |                        |  |  |  |  |  |  |
|                                                                          | Mathematics- II                                                             |                                                                 |              | Maths-I                |  |  |  |  |  |  |
| Course Outcomes (C                                                       | 0)*:                                                                        |                                                                 |              |                        |  |  |  |  |  |  |
| <b>CO1:</b> Analyze and correlate many real-life problems mathematically |                                                                             |                                                                 |              |                        |  |  |  |  |  |  |
|                                                                          | and thus find the appro                                                     | opriate so                                                      | olution for  | them using Fourier     |  |  |  |  |  |  |
| series and Transforms (Fourier and Laplace transform).                   |                                                                             |                                                                 |              |                        |  |  |  |  |  |  |
| CO2:                                                                     | Use ordinary differential equations student will be able to solve           |                                                                 |              |                        |  |  |  |  |  |  |
|                                                                          | various practical problems in Science and Engineering.                      |                                                                 |              |                        |  |  |  |  |  |  |
| CO3:                                                                     | Possess an ability to recognize and find families of solutions for          |                                                                 |              |                        |  |  |  |  |  |  |
| most real physical processes such as heat transfer, elasticity,          |                                                                             |                                                                 |              |                        |  |  |  |  |  |  |
| quantum mechanics, water flow and others, which are governed             |                                                                             |                                                                 |              |                        |  |  |  |  |  |  |
| by partial differential equations subject to boundary conditions.        |                                                                             |                                                                 |              |                        |  |  |  |  |  |  |
| CO4:                                                                     | <b>CO4:</b> Recognize functions of complex variables, techniques of complex |                                                                 |              |                        |  |  |  |  |  |  |
|                                                                          | integrals and compute in                                                    | tegrals o                                                       | ver comple   | ex surfaces to provide |  |  |  |  |  |  |
|                                                                          | solution for relevant physical processes.                                   |                                                                 |              |                        |  |  |  |  |  |  |
| *The mapping of CO/I                                                     | *The mapping of CO/PO attainment/Graduate Attributes are at Appendix-A      |                                                                 |              |                        |  |  |  |  |  |  |
| Fourier Series: Introdu                                                  | ction, Fourier Series on A                                                  | rbitrary                                                        | Intervals, 1 | Half-range cosine and  |  |  |  |  |  |  |
| sine series, Fourier T                                                   | ransform with properties                                                    | Fourier                                                         | Transform    | n Linearity property.  |  |  |  |  |  |  |
| Fourier Transform of                                                     | derivative, shifting and se                                                 | caling, C                                                       | onvolution   | . Fourier Cosine and   |  |  |  |  |  |  |

sine series, Fourier Transform with properties: Fourier Transform Linearity property. Fourier Transform of derivative, shifting and scaling, Convolution. Fourier Cosine and Sine transforms and properties: Fourier Cosine and Sine Transform. Linearity, Shifting and Scaling, Fourier Cosine and Sine transforms of Derivatives, Parseval's Identity. Ordinary Differential Equations: Differential equations of first order and first degree – linear and Bernoulli, equations. Exact differential equations. Equation solvable for p,y and x,Clairaut's equation. Application to orthogonal trajectories. Second and higher order ordinary linear differential equations with constant coefficients –Complementary function - Particular integrals (standard types), Differential Operator Method, Variation of parameters, Method of Undetermined Coefficients. Cauchy-Euler differential equation. Simultaneous linear differential equations (two variables) with constant coefficients, Application to RLC circuit, etc. Laplace transform, inverse transforms properties, Transforms of derivatives and integerals, Unit step functions. Dirac's delta functions, Applications to differential equations. Partial Differential Equations: Formation of partial



differential equations - Equations of first Order - Lagrange's linear equation - Charpit's method - Standard types of first order non-linear partial differential equations. Solution of second order linear partial differential equations in two variables with constant coefficients by finding complementary function and particular integral. Classification of PDE of second order - parabolic, elliptic and hyperbolic equations - Solution by separation of variables. Solutions of one-dimensional heat and wave equations and two-dimensional Laplace equation using Fourier series. Functions of Complex Variables: Limits, Continuity, Derivative of Complex Functions, Analytic Function, Cauchy Riemann Equation, Harmonic Functions, Conformal Mapping, Complex Integration, Cauchy's Theorem, Cauchy Integral formula, Taylors and Laurent's Expansion.

- "The Engineering Mathematics", 1<sup>st</sup> Ed., Chitkara University Publication, Vol. II.
- "Higher Engineering Mathematics", B V Ramana, Edition 2009, McGraw Hill.
- "Advanced Engineering Mathematics" (Vol. I & Vol. II), Dr. H. C. Taneja, I. K. International.

| Course                                                                                    | Course Name                                                                              | L-T-P        | Credits           | Pre-Requisite           |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------|-------------------|-------------------------|--|--|--|--|--|--|
| Code                                                                                      |                                                                                          |              |                   |                         |  |  |  |  |  |  |
| PH102                                                                                     | Engineering Physics3-1-04NIL                                                             |              |                   |                         |  |  |  |  |  |  |
| Course Outo                                                                               | Course Outcomes (CO)*:                                                                   |              |                   |                         |  |  |  |  |  |  |
| <b>CO1:</b> Apply the knowledge of physics through fundamental concepts together          |                                                                                          |              |                   |                         |  |  |  |  |  |  |
|                                                                                           | with analytical tools in everyday life.                                                  |              |                   |                         |  |  |  |  |  |  |
| <b>CO2:</b>                                                                               | Analyze a physical proble                                                                | em, and su   | ggest appropri    | ate possible solution   |  |  |  |  |  |  |
|                                                                                           | based on the physics concept                                                             | pts.         |                   |                         |  |  |  |  |  |  |
| CO3:                                                                                      | Explore physical systems                                                                 | s by settin  | g up experim      | nents, collecting and   |  |  |  |  |  |  |
|                                                                                           | analyzing data, identifying sources of uncertainty, and interpreting their               |              |                   |                         |  |  |  |  |  |  |
|                                                                                           | results in terms of the fundamental principles and concepts of physics                   |              |                   |                         |  |  |  |  |  |  |
| <b>CO4:</b>                                                                               | Evaluate and analyze scientific measurement and error analysis and apply                 |              |                   |                         |  |  |  |  |  |  |
| the fundamental concepts of physics to related engineering problems.                      |                                                                                          |              |                   |                         |  |  |  |  |  |  |
| *The mapping of CO/PO attainment/Graduate Attributes are at Appendix-A                    |                                                                                          |              |                   |                         |  |  |  |  |  |  |
| Vector and scalar fields, Gradient, divergence, curl and their physical interpretation,   |                                                                                          |              |                   |                         |  |  |  |  |  |  |
| Gauss's theorem and Stokes theorem (Statement only), Equation of continuity, Maxwell's    |                                                                                          |              |                   |                         |  |  |  |  |  |  |
| equations (In                                                                             | equations (Integral & differential form), Maxwell's equations in free space, Propagation |              |                   |                         |  |  |  |  |  |  |
| of electromag                                                                             | of electromagnetic waves in free space. Energy bands in solids, Metals, Semiconductors,  |              |                   |                         |  |  |  |  |  |  |
| Insulators, Ir                                                                            | Insulators, Intrinsic and extrinsic semiconductors, Free electron theory, fermi energy,  |              |                   |                         |  |  |  |  |  |  |
| carrier concentration of semiconductors, drift current density, Mobility effects,         |                                                                                          |              |                   |                         |  |  |  |  |  |  |
| Conductivity, V-I characteristics, Diffusion Current Density, Total Current Density, Hall |                                                                                          |              |                   |                         |  |  |  |  |  |  |
| Effect (Qualitative Idea) Introduction, Laser characteristics such as coherence,          |                                                                                          |              |                   |                         |  |  |  |  |  |  |
| monochromaticity, collimated and angular divergence, laser action, stimulated absorption, |                                                                                          |              |                   |                         |  |  |  |  |  |  |
| spontaneous                                                                               | emission, stimulated em                                                                  | ission, Pop  | pulation inver    | sion and pumping.       |  |  |  |  |  |  |
| Derivation of                                                                             | f Einstein's coefficient relati                                                          | on, Various  | s level lasers, t | two level, three level, |  |  |  |  |  |  |
| four level, Ru                                                                            | uby laser, Helium-Neon laser                                                             | r, Semicond  | uctor laser, con  | ncepts of Holography,   |  |  |  |  |  |  |
| LASER App                                                                                 | lications in engineering. Ba                                                             | asic princip | le of optical     | fiber, step index and   |  |  |  |  |  |  |



graded index fibers, Parameters of optical fibers, acceptance angle, acceptance cone, numerical aperture, normalized frequency, No. of modes, Attenuation in optical fibers, intermodal and intramodal dispersion (no derivation), optical fibers in communication, Applications of optical fibers in engineering. Terminology and classification, Derivation of Magnetic moments of an atom, Ferromagnetism and related phenomena, Ferrites, The domain structure, The hysteresis loop, Types of magnetic materials, soft magnetic materials, hard magnetic materials, applications of magnetic materials in engineering. Introduction, Meissner effect, critical field, critical current, Isotope effect, Types of superconductors: type I superconductors, type II superconductors, London equations, Penetration depth, Cooper pair and BCS theory (Qualitative only), high temperature superconductors. Applications of superconductivity. Introduction to Quantum Mechanics, Group velocity and phase velocity (No relation), de-Broglie waves, Uncertainty principle (statement only), Wave function and its significance, Normalized wave function, Time Independent Schrodinger wave equations, Time dependent Schrodinger wave equations, Particle in one dimensional box.

- Engineering Physics by H. K. Malik and A. K. Singh, Mc Graw Hill Education.
- Engineering Physics by Chitkara Publication 2<sup>nd</sup> Edition.
- Semiconductor Physics and devices, Donald A Neamen and Dhrubes Biswas, Mc Graw Hill Education

| Course                                                                                           | Course Name                                                                                | L-T-P       | Credits        | Pre-        |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------|----------------|-------------|--|--|--|--|--|
| Code                                                                                             | requisite                                                                                  |             |                |             |  |  |  |  |  |
| PH103                                                                                            | PH103Engineering Physics Lab0-0-21NIL                                                      |             |                |             |  |  |  |  |  |
| Course Outcomes (CO)*:                                                                           |                                                                                            |             |                |             |  |  |  |  |  |
| <b>CO1:</b> Students would be able to correlate practical knowledge of physics with the          |                                                                                            |             |                |             |  |  |  |  |  |
|                                                                                                  | theoretical concepts.                                                                      |             |                |             |  |  |  |  |  |
| <b>CO2:</b>                                                                                      | Students would achieve perfectness in ex                                                   | perimental  | skills related | to physics  |  |  |  |  |  |
|                                                                                                  | fundamentals.                                                                              |             |                |             |  |  |  |  |  |
| CO3:                                                                                             | O3: The study of practical applications will bring more confidence and ability             |             |                |             |  |  |  |  |  |
| among the students to design, perform, document and analyze advanced                             |                                                                                            |             |                |             |  |  |  |  |  |
| experiments in physics.                                                                          |                                                                                            |             |                |             |  |  |  |  |  |
| *The mapping of CO/PO attainment/Graduate Attributes are at Appendix-A                           |                                                                                            |             |                |             |  |  |  |  |  |
| Electrical Properties of Materials: To determine the ionization potential of mercury using a     |                                                                                            |             |                |             |  |  |  |  |  |
| gas filled dio                                                                                   | gas filled diode. To determine the e/m ratio of electron using Thomson method. Find out    |             |                |             |  |  |  |  |  |
| the polarizability of a dielectric substance by using dielectric constant kit. To study the Hall |                                                                                            |             |                |             |  |  |  |  |  |
| effect in a semiconductor. Quantum Mechanics: To determine Planck's constant by using            |                                                                                            |             |                |             |  |  |  |  |  |
| light emitting diodes. Magnetic Materials: To find out the Susceptibility of FeCl3 by            |                                                                                            |             |                |             |  |  |  |  |  |
| Quinke's Method. Study the variation of magnetic field with distance along axis of a             |                                                                                            |             |                |             |  |  |  |  |  |
| circular coil o                                                                                  | circular coil carrying current. To draw the B-H curve of a given magnetic material. Lasers |             |                |             |  |  |  |  |  |
| and Optics:                                                                                      | To determine the wavelength of light usir                                                  | ng Michelso | on's Interfere | ometer. To  |  |  |  |  |  |
| determine the                                                                                    | e resolving power of a plane transmission                                                  | grating. T  | o measure t    | he specific |  |  |  |  |  |
| rotation of ca                                                                                   | ne sugar solution using Laurent's half shad                                                | e polarimet | er. Study of   | Diffraction |  |  |  |  |  |



using Laser beam and thus to determine the wavelength/grating element. To study the laser beam characteristics like wave length, aperture & divergence etc. Fibre Optics: Determination of Numerical aperture of an optical fibre. To determine attenuation & propagation losses in optical fibres.

## Suggested Books:

- Lab Manuals prepared by faculty of Physics.
- Practical physics by Squirres, Cambridge University press.

## **<u>12.2 Engineering Science Courses</u>**

| S. No. | <b>Course Code</b> | Name of the Course                    | Credits |
|--------|--------------------|---------------------------------------|---------|
| 1      | EC101              | Basics of Electronics Engineering     | 4       |
| 2      | EC102              | Basics of Electronics Engineering Lab | 1       |
| 3      | CS101              | Introduction to C Programming         | 5       |
| 4      | EE101              | Basic of Electrical Engineering       | 4       |
| 5      | EE102              | Basics of Electrical Engineering Lab  | 1       |
| 6      | CS102              | Object Oriented Programming using C++ | 5       |
| 7      | ME102              | Engineering Graphics                  | 4       |
| 8      | ME152              | Manufacturing Practices               | 2       |
| 9      | ME153              | Engineering Graphics lab              | 1       |
| 10     | CS114              | Data Structures                       | 4       |

| Course Code    | Course Name                                                                 | L-T-P        | Credits        | Pre-          |  |  |
|----------------|-----------------------------------------------------------------------------|--------------|----------------|---------------|--|--|
|                |                                                                             |              |                | requisite     |  |  |
| EC101          | <b>Basics of Electronics Engineering</b>                                    | 3-1-0        | 4              | NIL           |  |  |
| Course Outcon  | Course Outcomes (CO)*:                                                      |              |                |               |  |  |
| CO1:           | Students would know the basics of elec                                      | tronics elen | nents, their t | functionality |  |  |
|                | and applications. They would be able to                                     | perceive th  | ne concept o   | f logic gates |  |  |
|                | and integrated circuits in electronics.                                     |              |                |               |  |  |
| CO2:           | Interpret the characteristics of various                                    | types of d   | iodes and t    | ransistors to |  |  |
|                | describe the operation of related circuits for evolving engineering         |              |                |               |  |  |
|                | solutions.                                                                  |              |                |               |  |  |
| CO3:           | Students would be able to apply fundamental principles of electronics       |              |                |               |  |  |
|                | together with analytic tools to evaluate and describe physical situations   |              |                |               |  |  |
|                | appropriate to address a scientific problem.                                |              |                |               |  |  |
| CO4:           | Students would possess an ability to explore physical systems by setting up |              |                |               |  |  |
|                | experiments, collecting and analysing data, identifying sources of          |              |                |               |  |  |
|                | uncertainty, and interpreting their results in terms of the fundamental     |              |                |               |  |  |
|                | principles and concepts of electronics.                                     |              |                |               |  |  |
| *The mapping   | of CO/PO attainment/Graduate Attributes                                     | are at App   | endix-A        |               |  |  |
| Semiconductor  | Theory (Energy Band Structure, Classified                                   | cation of Se | emiconducto    | ors, Doping). |  |  |
| Theory of PN j | unction diode, V-I Characteristics of a pa                                  | n junction c | liode under    | forward and   |  |  |



Zener diode, Breakdown in zener diode (Avalanche and Zener), V-I reverse bias. Characteristics of Zener diode. Varactor diode and its characteristics. **Opto-Electronic** Devices: Photodiode, Light Emitting Diode (LED). PN diode applications, Diode as a Switch, Zener Diode as Voltage Regulator, Use of Diodes in Rectifiers, Half Wave, Full Wave Centre-tap and Bridge Rectifier (Circuit diagram, Waveforms), Derivation of average and rms value of voltage, ripple factor, Peak Inverse Voltage, dc power, Efficiency, Comparison of different rectifiers, Diode Clippers: Positive and Negative Clippers. Introduction of Bipolar Junction Transistor (BJT), Construction of BJT, BJT Biasing, Operation of NPN and PNP BJT, Types of Transistor Amplifier Configurations : Common Base (CB), Common Emitter (CE), Common Collector (CC); Transistor Characteristics: Input and Output Characteristics of CB and CE Configurations. Transistor Parameters (Input Impedance, Output Admittance, forward current gain, reverse voltage gain), Comparison of CB, CE and CC Configurations (Why is CE Configuration widely used in amplifier circuits?). Number Systems : Decimal, Binary, Octal and Hexadecimal; Conversion from one number system to another, Binary Arithmetic (Addition, Subtraction, Multiplication, Division), 1's and 2's Complement, 1's complement and 2's complement subtraction, Logic Gates (OR, AND, NOT, NAND, NOR, Ex-OR, Ex-NOR), DeMorgan's Theorems, Realization of basic gates using Universal gates; Realization of logic expressions using basic gates. Introduction to Combinational and Sequential Logic, Latch and RS Flip Flop as memory element: Circuit Diagram and Truth Table. IC 555 Timer, Functional Block diagram of 555, Modes of operation of IC 555: Astable, Monostable and Bistable, Voltage Regulator IC 7805.

- 'Basic Electrical and Electronics Engineering', by R.Muthusubramanian, S. Sahlivahanan McGraw Hill, First Edition, 2010.
- 'Basic Electronics and Linear Circuits', N. N Bhargava, D. C Kulshreshtha, S. C Gupta; McGraw Hill Publications, Second Edition, 2013.
- 'Basic Electronics', D. P. Kothari, I. J. Nagrath, McGraw Hill, Second Edition, 2014.
- 'Solid State Electronic Devices', D. K. Bhattacharya, Rajnish Sharma, Oxford University Press, Second Edition, 2013.
- 'Electronic Principles'', Albert Malvino, David J. Bates, Mcgraw Hill Education, Seventh Edition, 2007.

| Course Code                                | Course Name                                                             | L-T-P         | Credits         | Pre-            |  |
|--------------------------------------------|-------------------------------------------------------------------------|---------------|-----------------|-----------------|--|
|                                            |                                                                         |               |                 | requisite       |  |
| EC102                                      | <b>Basics of Electronics</b>                                            | 0-0-2         | 1               | NIL             |  |
|                                            | Engineering Lab                                                         |               |                 |                 |  |
| Course Outcom                              | es (CO)*:                                                               |               |                 |                 |  |
| CO1:                                       | After completing the course,                                            | , students w  | ould know t     | the basics of   |  |
|                                            | electronics elements, their functionality and applications and would be |               |                 |                 |  |
| able to design basic electronics projects. |                                                                         |               |                 |                 |  |
| CO2:                                       | They would be able to analyze                                           | e and charact | erize the elect | tronic circuits |  |



|                                                                            | and have basic understanding for their implementation.     |  |  |  |  |
|----------------------------------------------------------------------------|------------------------------------------------------------|--|--|--|--|
| <b>CO3:</b> They would possess an ability to perceive the concept of logic |                                                            |  |  |  |  |
|                                                                            | like XOR and X-NOR and integrated circuits in electronics. |  |  |  |  |
| 1 001                                                                      |                                                            |  |  |  |  |

\*The mapping of CO/PO attainment/Graduate Attributes are at Appendix-A Familiarization with basic electronic components and Identification of linear and nonlinear elements based on VI characteristics. Plot and analyze the forward and reverse characteristics of PN junction Si and Ge diodes and determine their knee and breakdown voltages. Analyze Zener diode as voltage regulator and observe the output voltage with variable input voltage and fixed load resistance for Zener diodes with different breakdown voltages. Study and observe the output waveform of half-wave and full wave rectifiers on CRO and calculate the average and rms values of output voltage and current. Analyze the NPN/PNP transistors in common emitter configuration and plot their input and output characteristics. Analyze the truth tables of various logic gates and Implement 2-input XOR gate and 2-input X-NOR gate using basic gates. Study the operation of astable, monostable, and bistable multivibrators using 555 timer. Plot and analyze the V-I characteristics of Light Emitting Diode (LED) in forward biasing. Plot and analyze the V-I characteristics of Avalanche photo diode. To test the varactor diode by applying reverse voltage and see the corresponding change in capacitance across PN junction. Plot the graph between applied reverse voltage  $(V_r)$  versus capacitance (C).

## **Suggested Book(s)**

- 'Basic Electrical and Electronics', R Muthusubramanian, S Salivahanan, K, Tata McGraw Hill, ISBN: 9780070146129, Eighth Reprint 2012.
- 'Basic Electronics', D P Kothari, I J Nagrath , McGraw Hill, ISBN(13) : 978-93-329-0158-2, 2014.

| • Lab ma     | inuais                                                           |                                                              |                  |                   |  |  |
|--------------|------------------------------------------------------------------|--------------------------------------------------------------|------------------|-------------------|--|--|
| Course Code  | Course Name                                                      | L-T-P                                                        | Credits          | Pre-<br>requisite |  |  |
| CS101        | Introduction to C                                                | 0-0-10                                                       | 5                | NIL               |  |  |
| Course Outco | Programming                                                      |                                                              |                  |                   |  |  |
| Course Outco | . ,                                                              | Choose the appropriate C programming constructs to solve the |                  |                   |  |  |
|              | problems.                                                        |                                                              |                  |                   |  |  |
| CO2:         | Demonstrate the advantages and                                   | disadvan                                                     | tages of specifi | c techniques to   |  |  |
|              | be used.                                                         |                                                              |                  |                   |  |  |
| CO3:         | Differentiate between efficient ar                               | nd inefficie                                                 | ent way of prog  | ramming.          |  |  |
| <b>CO4:</b>  | Determine and demonstrate bugs in a program and recognize needed |                                                              |                  |                   |  |  |
|              | basic operations.                                                |                                                              |                  |                   |  |  |
| CO5:         | Formulate new solutions for pro                                  | gramming                                                     | problems or in   | nprove existing   |  |  |
|              | code to program effectively                                      |                                                              |                  |                   |  |  |

I ah manuale

\*The mapping of CO/PO attainment/Graduate Attributes are at Appendix-A

Structure of a c program, Compilation, Linking & Execution, Comments in C,



Identifiers: Nomenclature of an Identifier, Variables, Constants, Reserved Keywords, Pre-processor directives: #define, #include, Data Types: Introduction Initialization and Declaration of Data Type, Expressions, Statements, Symbolic Constants, Type, Memory representation of integer, character and float data types. Conversion / Type Casting, Input Output in C: Introduction, scanf(), printf(), getchar(), putchar(), Operators: Arithmetic, Relational, Logical, Assignment, Conditional, bitwise, sizeof, Precedence of operators and their associativity, Iteration control Statements:: while, do - while, for, Nested loops, Continue, break, Functions: User defined functions, Built-in functions, Pointers: Introduction to pointer, Pointer expression and pointer Arithmetic, Assignment, Value finding (dereferencing), Taking a pointer address, Adding an integer to a pointer, null pointer, generic pointer, void pointer. Function parameter passing mechanisms: call by value, call by reference, call by address, Recursion, Storage classes: auto, register, static, extern, Types of Arrays, 1-D Arrays: Introduction, Need & Importance, Initialization of arrays, inputting values, assigning Values, Passing 1-D to Function, Multi-Dimensional Arrays: Declaration of 2-D Array, Initialization of 2-D Array, passing 2-D array to function, Representing 1-D arrays as pointer, Arrays of pointers, pointer to an array, Representing 2-D arrays as pointer, Dynamic memory Allocation in C, Strings: Introduction, Reading and writing strings, String functions, (Predefined): isalpha(), isdigit(), isspace(), strcat(), strncat(), strcpy(), strncpy(), strlen(), strlwr(), strupr(), strchr(), strcmp(), strstr(), Pointers and Strings, Passing string to a function, Array of Strings, User defined data types in C, Using typedef keyword, Enumerated data types in C, Structure – Declaring Structure, Accessing members of Structure, Copying Structure, Accessing Structure elements, Nested Structure, Array of structure, passing structure elements to a function individually, Passing entire structure to a function, Pointer to structure, Passing pointer of structure to function, Union

- Reema Thareja, Programming in C, 2<sup>nd</sup> Edition, Oxford University Press.
- Vikas Gupta, Computer concepts and C programming, 1<sup>st</sup> edition, DreamTech Press.
- Dennis Ritchie and Brian. W. Kernighan, The C Programming Language, 2<sup>nd</sup> edition, Prentice Hall.

| Course Code     | Course Name                                                                                                                                                                                                                                          | L-T-P     | Credits     | Pre-<br>requisite |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------|-------------------|
| EE101           | Basics of Electrical Engineering                                                                                                                                                                                                                     | 3-1-0     | 4           | NIL               |
| Course Outcomes | (CO)*:                                                                                                                                                                                                                                               |           |             |                   |
| CO1:            | Students would know the basics of DC circuits, Series and parallel connections, Kirchoff's current and voltage laws, mesh and nodal analysis. They would be able to compute various electrical engineering concepts based on real time applications. |           |             |                   |
| CO2:            | Students would possess an ability to a<br>RC & RLC circuits and have<br>implementation and also able to comp                                                                                                                                         | basic und | lerstanding | g of their        |

|      | circuits like impedance and power. They would also learn              |  |  |  |
|------|-----------------------------------------------------------------------|--|--|--|
|      | phenomenon like resonance                                             |  |  |  |
| CO3: | Students would be able to apply and clarify fundamental principles of |  |  |  |
|      | magnetic effects, magnetism and their functionality for electrical    |  |  |  |
|      | equipment.                                                            |  |  |  |
| CO4: | Students would possess an ability to conduct experiments, understand  |  |  |  |
|      | the principle, construction and working of Transformers, DC motors    |  |  |  |
|      | and Induction motors.                                                 |  |  |  |
|      |                                                                       |  |  |  |

\*The mapping of CO/PO attainment/Graduate Attributes are at Appendix-A DC Circuits: Introduction to DC Circuits and related terminology, Series and Parallel combination of resistances, Kirchhoff's Laws: KVL and KCL, Mesh or loop Analysis and Nodal Analysis. Magnetic Circuits: Definitions of Magnetic quantities, Magnetic Circuit, Comparison between Electric and Magnetic Circuits Magnetic Effect of Electric Current, Current carrying conductor in magnetic field, Law of EMI, Induced EMF: self-inductance, mutual inductance, Coupling Coefficient between two magnetically coupled circuits.AC circuits: Generation of Alternating EMF, Terminology, Concept of 3phase EMF generation, RMS value, Average value, Phasor representation of alternating quantities, Analysis of AC circuits: Single phaseAC circuits: Representation of alternating quantities in rectangular and polar forms, RL, RC, RLC series circuits and its Power calculations. Resonance in series AC circuits. Three Phase AC circuits: Star Connections, Delta connections. Measurements of power in 3 phase circuits. Electrical MachinesTransformer: Principle, Construction, Working. DC Motor: Principle, Construction, Working. Three Phase Induction Motors: Principle, Construction, Working. Electrical measuring instruments and transducers: Electrical Measuring instruments: Classification of instruments, Basic principles of indicating instruments. Electrical Transducers Introduction, Types of transducer: LVDT, RTD.Thermocouple, Thermistor, Piezoelectric transducer, Photoelectric transducer.

- 'Basic Electrical and Electronics Engineering', R. Muthusubramanian, S Salivahanan, McGraw Hill, 2009.
- 'Basic Electrical and Electronics Engineering', B.R. Patil, Oxford Higher Education Revised Second Edition, 2013.
- 'Basic Electrical Engineering', T.K Nagsarkar& M.S Sukhija, Oxford2017.
- 'Basic Electrical Engineering' D.C, Kulshreshtha, TMH, 2014.

| Course Code       | Course Name                    | L-T-P             | Credits       | Pre-<br>requisi<br>te |  |
|-------------------|--------------------------------|-------------------|---------------|-----------------------|--|
| EE102             | <b>Basics of Electrical</b>    | 0-0-2             | 1             | NIL                   |  |
|                   | Engineering Lab                |                   |               |                       |  |
| Course Outcomes ( | Course Outcomes (CO)*:         |                   |               |                       |  |
| C01:              | After completing the course    | e, students wou   | ld know t     | he basic              |  |
|                   | components of electrical eleme | nts, equipments a | and their fun | ctionality            |  |



|              | with applications. With the knowledge of the basic components,      |  |  |  |
|--------------|---------------------------------------------------------------------|--|--|--|
|              | students would be able to make basic electrical projects            |  |  |  |
| CO2:         | They would possess an ability to analyze and characterize the       |  |  |  |
|              | electrical equipment's and instrument's basics for their            |  |  |  |
|              | implementation                                                      |  |  |  |
| CO3:         | They would be able to measure power and power factor of ac circuits |  |  |  |
|              | and understand three-phase star and delta connections with and      |  |  |  |
|              | without applying loads to calculate 3-phase power.                  |  |  |  |
| CO4:         | Possess an ability to perceive the concept of Fuse/MCB              |  |  |  |
|              | characteristics for different fault currents. Students will be      |  |  |  |
|              | familiarized with appearance and functioning of the MCB and fuse    |  |  |  |
|              | used in their homes.                                                |  |  |  |
| *The mapping | of CO/PO attainment/Graduate Attributes are at Appendix-A           |  |  |  |

To study the use of multi-meter and testing of various components. , Verification of Kirchoff's Laws i.e KCL and KVL in DC circuits. Analysis of AC circuits: To find voltage, current

relationship and power factor in single phase series R-L-C circuits. Measurement of power in single phase series R-L-C circuits. To verify the relation between line and phase quantities in three phase circuits. Measurement of self-inductance, mutual inductance and coupling coefficient of windings. To perform open- circuit and short circuit test on a transformer and determine Efficiency, Voltage ratio. To study speed control of the D.C. shunt motor by Armature control method and Field control method, to Connect; reverse the direction of rotation of a 3- phase induction motor, Measurement of temperature using RTD, Measurement of displacement using LVDT. to study the current – time characteristics of MCBs / Fuse.

- 'Basic Electrical Engineering' by D C Kulshreshtha', Tata McGraw Hill, 2009.
- Lab manuals.

| Course<br>Code | Course Name                                                           | L-T-P      | Credits      | Pre-requisite    |  |
|----------------|-----------------------------------------------------------------------|------------|--------------|------------------|--|
| CS102          | <b>Object Oriented Programming</b>                                    | 0-0-8      | 5            | Introduction     |  |
|                | using C++                                                             |            |              | to C             |  |
|                |                                                                       |            |              | Programming      |  |
| Course Out     | comes (CO)*:                                                          |            |              |                  |  |
| CO1:           | Understand the problem statement using principles of mathematics and  |            |              |                  |  |
|                | engineering sciences.                                                 |            |              |                  |  |
| CO2:           | Identify the OOPs programming c                                       | constructs | to solve the | ne problems by   |  |
|                | differentiating between efficient and inefficient way of programming. |            |              |                  |  |
| CO3:           | Determine the bugs in a program                                       | and recog  | gnize the n  | eed of alternate |  |
|                | approaches.                                                           |            |              |                  |  |
| CO4:           | Acquire ability for independent an                                    | d life-lon | g learning   | in the broadest  |  |
|                | context of technological change.                                      |            |              |                  |  |



| 005                     | Describe solutions to second hereby solutions and solutions is some                                                                                                    |  |  |  |  |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| <b>CO5</b> :            | Provide solutions to societal, health, safety, legal, and cultural issues<br>through contextual knowledge of professional engineering practice.                        |  |  |  |  |
| *The monning            |                                                                                                                                                                        |  |  |  |  |
|                         | *The mapping of CO/PO attainment/Graduate Attributes are at Appendix-A                                                                                                 |  |  |  |  |
| Comparison              | <b>n:</b> Introduction to basic concepts of object-oriented programming, between procedural programming paradigm and object-oriented                                   |  |  |  |  |
| 1                       | g paradigm, Problem solving strategies Functions in C++: inline functions,                                                                                             |  |  |  |  |
|                         | ments, function prototyping, function overloading, call by reference, call by                                                                                          |  |  |  |  |
| e                       | Il by pointer, return by reference.Classes and Objects:Specifying a class,                                                                                             |  |  |  |  |
|                         | uss objects, Accessing class members, Access specifiers – public, private, and                                                                                         |  |  |  |  |
| -                       | Objects and memory, Static members, Static objects, constant member                                                                                                    |  |  |  |  |
| -                       | nstant objects, friend functions, friend class, Passing Object as an argument                                                                                          |  |  |  |  |
|                         | y reference, by address, Returning object from a function. Constructors and                                                                                            |  |  |  |  |
|                         | Need for constructors and destructors, Copy constructor, Dynamic                                                                                                       |  |  |  |  |
|                         | , Destructors, Constructors and destructors with static members. Operator                                                                                              |  |  |  |  |
|                         | g and Type Conversion:Defining operator overloading, Rules for overloading                                                                                             |  |  |  |  |
| -                       | Overloading of unary operators, binary operators $(+, -, -)$ , binary operators using                                                                                  |  |  |  |  |
| -                       | ions, manipulation of strings using operators $Overloading(>,<,==)$ , Type                                                                                             |  |  |  |  |
|                         | Basic type to class type, Class type to basic type, Class to class type.Dynamic                                                                                        |  |  |  |  |
|                         | lanagement & pointers:Understanding pointers, Accessing address of a                                                                                                   |  |  |  |  |
| •                       | eclaring & initializing pointers, Accessing a variable through its pointer,                                                                                            |  |  |  |  |
| Pointer arit            | hmetic, Pointer to a pointer, Pointer to a function, Dynamic memory                                                                                                    |  |  |  |  |
| management              | t - new and delete Operators, Pointers and classes, Pointer to an object,                                                                                              |  |  |  |  |
| Pointer to              | a memberthis Pointer, Possible problems with the use of pointers -                                                                                                     |  |  |  |  |
| Dangling/wi             | ild pointers, Null pointer assignment, Memory leak and allocation failures.                                                                                            |  |  |  |  |
| Inheritance:            | Introduction, Defining derived classes, Forms of inheritance (single,                                                                                                  |  |  |  |  |
| multilevel,             | multiple, hybrid & hierarchical), Ambiguity in multiple and multipath                                                                                                  |  |  |  |  |
|                         | with constructor.Virtual base class: Overriding member functions, Order of                                                                                             |  |  |  |  |
|                         | f constructors and destructors. Virtual Functions and Polymorphism: Concept                                                                                            |  |  |  |  |
| -                       | Early binding and late binding, Virtual functions, Pure virtual functions,                                                                                             |  |  |  |  |
|                         | sses, Virtual destructors & polymorphism. Exception Handling: Review of                                                                                                |  |  |  |  |
|                         | rror handling, Basics of exception handling, Exception handling mechanism,                                                                                             |  |  |  |  |
| e                       | nechanism, catching mechanism, Rethrowing an exception, Specifying                                                                                                     |  |  |  |  |
| -                       | Templates and Generic Programming: Function templates, Class templates,                                                                                                |  |  |  |  |
| -                       | of template functions. Introduction to the Standard Template Library:                                                                                                  |  |  |  |  |
|                         | ERS: STL Components(Container, Algorithms and Iterators) Sequence                                                                                                      |  |  |  |  |
|                         | <pre>vector( push_back(), pop_back(), back(), size(),empty()), list (push_front(),<br/>front(), size(), empty()) dequeue (push_back(), pop_back(), push_front(),</pre> |  |  |  |  |
| <pre>pop_front(),</pre> |                                                                                                                                                                        |  |  |  |  |
|                         | (),Empty(),Count(),Clear()) multiset (Insert(), erase(), Size(),Empty(),                                                                                               |  |  |  |  |
|                         | ear()) map(Insert(), erase(),Size(), Empty(), Count(), Clear()) multimap                                                                                               |  |  |  |  |
|                         | ase(), Size(), Empty(), Count(), Clear()) Derived Container: stack, queue,                                                                                             |  |  |  |  |
| priority_que            |                                                                                                                                                                        |  |  |  |  |
| remove(),               | remove_copy(), replace(), replace_copy(), reverse(), reverse_copy(),                                                                                                   |  |  |  |  |
| iemove(),               | remove_copy(), replace_copy(), reverse(), reverse_copy(),                                                                                                              |  |  |  |  |



unique(), unique\_copy(), max(), max\_element(), min(), min\_element(), ITERATORS: input, output, forward, VECTORS: back(), begin(), clear(), empty(), end(), erase(), pop\_back(), push\_back(), console I/O: Concept of streams, input/ Output using Overloaded operators >> and << and Member functions of I/O stream classes. Data Files management:,File streams, Hierarchy of file stream classes, Error handling during file operations, Reading/Writing of files, Accessing records randomly.

- E Balagurusamy, Object Oriented Programming with C++, 4th Edition, Tata McGraw Hill.
- Robert Lafore, Object Oriented Programming in C++, Third Edition, Galgotia 2008.
- Herbert Schildt, The Complete Reference C++, Second edition, Tata McGraw Hill.
- Stroustrup, Bjarne, The C++ Programming Language, Pearson Education.
- Lippman, S.B. and Lajoie, J., C++Primer, Pearson Education.

| Course                                                                                         | Course Name                                       | L-T-P          | Credits        | Pre-         |  |  |
|------------------------------------------------------------------------------------------------|---------------------------------------------------|----------------|----------------|--------------|--|--|
| Code                                                                                           |                                                   |                |                | requisite    |  |  |
| ME102                                                                                          | ME102 Engineering Graphics 3-1-0 4 N              |                |                |              |  |  |
| Course Outc                                                                                    | Course Outcomes (CO)*:                            |                |                |              |  |  |
| CO1:                                                                                           | Improve the technical writing, basic sketch       | ning and dra   | wing.          |              |  |  |
| CO2:                                                                                           | Use engineering scale effectively                 |                |                |              |  |  |
| CO3:                                                                                           | Use dimensioning effectively.                     |                |                |              |  |  |
| <b>CO4:</b>                                                                                    | Use development of surfaces.                      |                |                |              |  |  |
| CO5:                                                                                           | Communicate through Engineering Graphi            | ics.           |                |              |  |  |
| *The mapping                                                                                   | g of CO/PO attainment/Graduate Attributes a       | are at Apper   | ndix-A         |              |  |  |
| Introduction of                                                                                | of Engineering Drawing & Drawing Instrur          | nents: Clas    | sifications of | f Drawing,   |  |  |
| Drawing Ins                                                                                    | truments, Use of Drawing Materials,               | Drawing        | Sheet and      | its Sizes.   |  |  |
| LETTERING                                                                                      | : Single Stroke Vertical Gothic Lettering, it     | s sizes and    | dimensionin    | g, Inclined  |  |  |
| Italic Gothic                                                                                  | Lettering (Ratio of 7:5) and freehand writin      | ng practice    | .Convention    | s:for lines, |  |  |
| Various Mate                                                                                   | erials and breaks Dimensioning:Differe            | ent types      | of dimention   | ning, their  |  |  |
| symbols, nota                                                                                  | tions and placement . SCALES: Types of s          | cales, Plain   | scale, Diag    | onal scale.  |  |  |
| PROJECTION                                                                                     | N OF POINTS: Introduction, concept of he          | orizontal ar   | nd vertical p  | lanes, first |  |  |
| and third ang                                                                                  | le projections; conventional representation of    | of points &    | its projection | n in all the |  |  |
| four quadrant                                                                                  | s Projection of Lines-1: Introduction, projection | ction of line  | es parallel &  | angular to   |  |  |
| principal plan                                                                                 | es, true lengths of lines and their horizontal    | l and vertic   | al traces (inc | clination to |  |  |
| one reference                                                                                  | plane)Projection of lines-2: projection of li     | ines,, true le | ength of line  | s and their  |  |  |
| horizontal and vertical traces(inclination to both reference plane), Projections of Planes:    |                                                   |                |                |              |  |  |
| Introduction, Projection of planes parallel and angular to principal planes and their traces . |                                                   |                |                |              |  |  |
| Projection of                                                                                  | solids-1: Projection of right solids; solids      | of rotation    | n and polyhe   | edrons etc.  |  |  |
| (inclination to                                                                                | o one reference plane). Projection of solids-2    | 2: projectio   | n of right so  | lids, solids |  |  |
| of rotation an                                                                                 | d polyhedrons etc.(inclination to both refer      | ence plane)    | ). Sectioning  | ; of Solids: |  |  |



Principles of sectioning, types of sectioning, and their practice on projection of solids, sectioning by auxiliary planes. Development of surfaces: Development of surfaces of cylinders, cones, pyramids and prisms. Orthographic Projection: practice in orthographic projections. Isometric projection: concept of isometric views; isometric scales and exercises on isometric views.

- "Engineering Drawing", P.S. Gill; Eleventh edition, S.K. Kataria& Sons.
- "Engineering Drawing", R. K. Dhawan; 2014 Edition, S. Chand and Company.

| Course                                                                                                                                                            | Course Name                                   | L-T-P        | Credits       | Pre-         |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--------------|---------------|--------------|--|
| Code                                                                                                                                                              |                                               |              |               | requisite    |  |
| ME152                                                                                                                                                             | Manufacturing Practices                       | 0-0-4        | 2             | NIL          |  |
| Course Outc                                                                                                                                                       | omes (CO)*:                                   |              |               |              |  |
| CO1:                                                                                                                                                              | The students will understand the working of   | of engines a | nd simple m   | achines      |  |
| CO2:                                                                                                                                                              | The students will gain knowledge about        | different    | processes ir  | nvolved in   |  |
|                                                                                                                                                                   | manufacturing process                         |              |               |              |  |
| *The mapping                                                                                                                                                      | g of CO/PO attainment/Graduate Attributes a   | re at Apper  | ndix-A        |              |  |
| Introduction                                                                                                                                                      | to manufacturing set up and course re         | quirement;   | work cultu    | ıre; safety  |  |
| requirements;                                                                                                                                                     | fire, firefighting & accident handling; and   | first aid. H | ands on prac  | ctice in the |  |
| following wo                                                                                                                                                      | rks area: Carpentry Shop, Fitting Shop, Sl    | heet Metal   | Shop, Mach    | nine Shop,   |  |
| Welding Sho                                                                                                                                                       | p, Electrical & Electronic Shop, Compute      | er Work Be   | ench. Carper  | ntry Shop:   |  |
| Various types                                                                                                                                                     | s of timber and practice boards, defects in   | timber, sea  | soning of w   | ood; tools,  |  |
| wood operation                                                                                                                                                    | on and various joints; exercises involving u  | se of impor  | rtant carpent | ry tools to  |  |
|                                                                                                                                                                   | ous operations and making joints. Fitting Sho |              |               |              |  |
|                                                                                                                                                                   | d in fitting shop; exercise involving marking | 0            | 01            |              |  |
| -                                                                                                                                                                 | le-Female mating parts practice, trappin      | • •          |               | -            |  |
|                                                                                                                                                                   | of surfaces of various objects; sheet meta    |              |               |              |  |
| ·                                                                                                                                                                 | ng and brazing; exercises involving use of s  |              | • •           |              |  |
| 5                                                                                                                                                                 | Machine Shop: Introduction to various ma      |              | -             | -            |  |
| _                                                                                                                                                                 | erations; exercises involving lathe, various  |              |               | -            |  |
| -                                                                                                                                                                 | Velding Shop: Introduction to different weld  | -            | -             |              |  |
|                                                                                                                                                                   | elding joints; welding defects; exercises in  | -            | -             |              |  |
| welding. Electrical & Electronic Shop: Electrical: Introduction to electrical wiring; Testing                                                                     |                                               |              |               |              |  |
| tools and apparatus. Electronic: Introduction to electronic components (Diode, Resistor,                                                                          |                                               |              |               |              |  |
| Transistors, Capacitors, LED's, PCB's etc) Preparation of PCBs involving soldering applied                                                                        |                                               |              |               |              |  |
| to electronic applications. Introduction to tools & test apparatus; Troubleshooting of                                                                            |                                               |              |               |              |  |
| electronic circuits. Computer Bench Work: Introduction to computer Hardware & peripherals Parts: Motherboard, Processor, Socket types, Input/output ports, Memory |                                               |              |               |              |  |
| (primary, secondary), hard disc, CD/DVD drive, key board, mouse, SMPS.                                                                                            |                                               |              |               |              |  |
| Assembling/Dissembling and Fault identification: SMPS function and power distribution,                                                                            |                                               |              |               |              |  |
| testing (using multi meter), part connectivity, error correction and detection. Introduction to                                                                   |                                               |              |               |              |  |
| advance technology and current wireless technologies (laptop component identification,                                                                            |                                               |              |               |              |  |
| Bluetooth, Wi                                                                                                                                                     | Bluetooth, Wi Fi RF, IRDA etc.)               |              |               |              |  |



## **Suggested Books:**

- Workshop/lab manual.
- A course in Workshop technology Vol I & II by Raghuwanshi B.S.; Dhanpat Rai & Sons, New Delhi.
- Production Technology by Jain R.K.; Khanna Publishers, New Delhi.
- Manufacturing Practice, By Singh, S; S.K. Kataria& Sons, New Delhi
- Basic Electronics by NN Bhargava; TTTI
- Computer Fundamental by PK Sinha; BPB Publication.
- Computer Hardware Bible by Winn L Rosch; Bible Publication

| Course Code                                                                                 | CodeCourse NameL-T-PCreditsPre-requise                                |       | Pre-requisite |     |  |  |
|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------|---------------|-----|--|--|
| ME153                                                                                       | Engineering                                                           | 0-0-2 | 1             | NIL |  |  |
|                                                                                             | Graphics Lab                                                          |       |               |     |  |  |
| Course Outco                                                                                | Course Outcomes (CO)*:                                                |       |               |     |  |  |
| CO1:                                                                                        | 01: Students would know the basics commands of the AutoCAD and their  |       |               |     |  |  |
|                                                                                             | practical application.                                                |       |               |     |  |  |
| CO2:                                                                                        | Possess an ability to use various draw and modify commands to achieve |       |               |     |  |  |
|                                                                                             | practical industrial drawings.                                        |       |               |     |  |  |
| CO3:                                                                                        | They would be able to understand the usage of various drawing aids to |       |               |     |  |  |
|                                                                                             | achieve required drawings.                                            |       |               |     |  |  |
| *The mapping of CO/PO attainment/Graduate Attributes are at Appendix-A                      |                                                                       |       |               |     |  |  |
| Introduction of the CAD (computer aided drafting) software and its utilities in the         |                                                                       |       |               |     |  |  |
| engineering software. Study of the various toolbar options and exercises to familiarize all |                                                                       |       |               |     |  |  |
| the drawing tools, Study the basic initial setting and viewing of the drafting software     |                                                                       |       |               |     |  |  |

interfaces, Use of basic entities in 2D, uses of various modify commands of the drafting software, dimensioning in 2D and 3D entries, Study and implementing of coordinate systems.

- "Engineering Drawing", P.S. Gill; Eleventh edition, S.K. Kataria& Sons.
- "Engineering Drawing", R. K. Dhawan; 2014 Edition, S. Chand and Company.

| Course Code       | Course Name                                                           | L-T-P | Credits | Pre-requisite |
|-------------------|-----------------------------------------------------------------------|-------|---------|---------------|
| CS114             | Data Structures                                                       | 0-0-8 | 4       | Introduction  |
|                   |                                                                       |       |         | to C          |
|                   |                                                                       |       |         | Programming   |
| Course Outcomes ( | CO)*:                                                                 |       |         |               |
| C01:              | After understanding the basic types for data structure, students will |       |         |               |
|                   | be able to implement different real world applications.               |       |         |               |
| CO2:              | Students will be able to determine time and memory complexity of      |       |         |               |
|                   | basic algorithm constructs.                                           |       |         |               |
| CO3:              | Implement algorithms for the creation, insertion, deletion, and       |       |         |               |
|                   | traversal of each data structure.                                     |       |         |               |



| <b>CO4:</b>  | Problems based on searching and sorting algorithms.                                                                       |
|--------------|---------------------------------------------------------------------------------------------------------------------------|
| <b>CO5</b> : | Formulate new solutions for programming problems or improve<br>existing code using learned algorithms and data structures |
|              |                                                                                                                           |

\*The mapping of CO/PO attainment/Graduate Attributes are at Appendix-A Introduction: Basic Terminology, Elementary Data Organization, Data Structures and Operations, Algorithm : Complexity, Time-Space Tradeoff, Asymptotic Notations for Complexity( $\Omega, \theta, O$ ). Array: Introduction, Representation of Linear Arrays in Memory, Traversing Linear Arrays, Arrays: Inserting and Deleting (at Beginning, middle and at the end), Searching: Linear and Binary Search with their Complexity, Sorting: Bubble Sort & its Complexity. Linked List: Introduction & its memory representation, Traversing a Linked List, Insertion into Linked List (sorted and unsorted Linked List), Deleting from Linked List, Operations on Doubly Linked List,, Circular linked List & its applications. Stacks: Array and Linked representation of Stacks, Implementations of recursive and non recursive procedures by Stacks. Applications: Arithmetic Expressions, Polish Notation, Transforming Infix Expressions into Postfix Expressions Queues : Representation as Array and Linked List, Dequeue,, Circular Queues, Priority Queues, Sorting Techniques-Quick sort, Merge Sort, Radix Sort, Selection Sort, Insertion Sort & their complexity, Trees: Binary trees, complete binary trees, Data structures for representing binary trees, Tree Traversal: preorder, In order, Post order and their algorithms, Binary Search Trees, Insertion, deletion and searching in these trees. Balanced binary Trees, AVL trees, insertion and Deletion in AVL tree, Red Black Tree, Heaps, Difference between heap and Array, insertion and deletion in heap. Heap sort and its applications. Graphs: Basic terminology, directed and undirected graphs, notion of path, Representation of graphs: edge list structures, adjacency list structures, adjacency matrix, Linked List representation of Graph, Operations on Graph, Graph traversals: DFS, BFS. Hashing: Techniques, Collision and its resolving.

## Suggested Books:

- Seymour Lipschutz, Data Structures, Schaums' Outlines Indian Adapted Edition 2006, Tata McGraw-Hill.
- Tanenbaum, Augenstein, &Langsam, Data Structures using C and C++, Prentice Hall of India, Second edition.
- RichardGilberg, Behrouz Forouzan, Data Structures, Second edition.

| S. No. | <b>Course Code</b> | Name of the Course                     | Credits |
|--------|--------------------|----------------------------------------|---------|
| 1      | EC105              | Digital Electronics & Logic Design     | 3       |
| 2      | EC106              | Digital Electronics & Logic Design Lab | 1       |
| 3      | EC107              | Analog Electronics                     | 3       |
| 4      | EC108              | Analog Electronics Lab                 | 1       |
| 5      | EC109              | Microprocessor & Microcontroller       | 3       |
| 6      | EC110              | Microprocessor & Microcontroller Lab   | 1       |
| 7      | EC111              | Signals & Systems                      | 3       |

## **12.3 Programme Core Courses**



| 8  | EC113 | Measurement and Virtual Instrumentation lab  | 1 |
|----|-------|----------------------------------------------|---|
| 9  | EC135 | Network Analysis & Control Systems           | 3 |
| 10 | EC114 | Microelectronic Circuits                     | 3 |
| 11 | EC115 | Microelectronic Circuits Lab                 | 1 |
| 12 | EC118 | Digital Signal Processing                    | 3 |
| 13 | EC119 | Digital Signal Processing Lab                | 1 |
| 14 | EC129 | Application development using Python         | 4 |
| 15 | EC137 | Embedded system& IoT                         | 3 |
| 16 | EC138 | Embedded system & IoT Lab                    | 1 |
| 17 | CS115 | Operating Systems                            | 4 |
| 18 | EC123 | Analog and Digital Communication             | 3 |
| 19 | EC124 | Analog and Digital Communication Lab         | 1 |
| 20 | EC251 | Database Management System                   | 4 |
| 21 | EC139 | Introduction to CCNA routing and switching   | 4 |
| 22 | AM104 | Numerical Methods and Statistical Techniques | 3 |

| Course Code                                                            | Course Name                                                             | L-T-P | Credits | Pre-requisite |
|------------------------------------------------------------------------|-------------------------------------------------------------------------|-------|---------|---------------|
| EC105                                                                  | Digital Electronics and Logic                                           | 3-1-0 | 3       | Basics of     |
|                                                                        | Design                                                                  |       |         | Electronics   |
|                                                                        |                                                                         |       |         | Engineering   |
| <b>Course Outcome</b>                                                  | Course Outcomes (CO)*:                                                  |       |         |               |
| CO1:                                                                   | Understand the basics of difference between analog and digital circuits |       |         |               |
|                                                                        | and their applications.                                                 |       |         |               |
| CO2:                                                                   | To implement simple logical operations required for the designing of    |       |         |               |
|                                                                        | digital circuits and understand common forms of number representation.  |       |         |               |
| CO3:                                                                   | Reduction of Boolean expressions for the designing of minimized         |       |         |               |
|                                                                        | logical circuits.                                                       |       |         |               |
| CO4:                                                                   | Design and implementation of combinational circuits.                    |       |         |               |
| CO5:                                                                   | Design and implementation of sequential circuits and their application. |       |         |               |
| *The mapping of CO/PO attainment/Graduate Attributes are at Appendix-A |                                                                         |       |         |               |

Introduction to Digital Concepts: Digital and Analog systems, logic levels & Pulse waveform. Logic Gates: And Gate, OR Gate, Not gate, Universal Gates, Exclusive–OR gate, Exclusive-NOR gate. Number systems: Decimal number system, Binary number system. Representation of signed numbers. Octal number system, Hexadecimal number system. Binary codes: Classification of binary codes. 8421 BCD code, Excess three code, Gray code. Error detecting codes: Parity, checksum, block parity. Error correcting codes: 7-bit Hamming code, alphanumeric codes: ASCII code. Boolean algebra: Laws of Boolean algebra and De Morgan's Theorem. Minimization of Boolean expression. Boolean expression and logic diagram, converting AND/OR/Invert Logic to NAND/NOR logic. Boolean Functions and their representation: Sum of Product (SOP), Product of Sum (POS), canonical forms. Karnaugh map (upto 5 variable) Q-M method of minimization Digital IC families (DTL, TTL, ECL, MOS and CMOS): Comparison in terms of threshold voltage, Propagation delay, power dissipation, Fan in, Fan out, voltage and current parameters, Noise



margin, operating temperature and speed power product. Logic families. Combinational circuit: Arithmetic circuits Binary Adders & Subtractors (half, Full, parallel), Magnitude Comparator: Multiplexer and Demultiplexer, Encoder, Priority encoder, Decoder, Code Converters Parity bit generators and checkers. Sequential circuits: Classification of sequential circuits, Flip flops SR, JK, T, D, Race around condition and Master slave flip flops Flip flop excitation table, Conversion of flip flops. Shift Registers: SIPO, SISO, PISO and PIPO. Counters: Asynchronous counters, design of asynchronous counters, effects of propagation delay in ripple counters, synchronous counters. Shift register counter: Ring counter and Johnson counter. D/A Converter and A/D converters: Introduction, Digital to analog conversion, R-2R DAC, weighted resistor DAC, A/D Converter: Analog to digital conversion using Successive approximation method, Dual slope method. Semiconductor Memories: program and data memory, memory types and terminology, SRAM and DRAM. Programmable Logic Devices: ROM, PAL, PLA, PROM.

## Suggested Books:

- A. Anand Kumar, Fundamentals of digital circuits, 3<sup>rd</sup> Edition, PHI.
- Thomas L. Floyd, 10<sup>th</sup> Edition, Digital Fundamentals, Pearson Publications.
- M. Morris Mano, Digital Design, 4.ed., Prentice Hall of India Pvt. Ltd., New Delhi, Sixth impression /Pearson Education (Singapore) Pvt. Ltd., New Delhi.
- Donald P.Leach and Albert Paul Malvino, Digital Principles and Applications, 5<sup>th</sup> Edition, Tata McGraw Hill Publishing Company Limited, NewDelhi, 2003.

| Course Code            | Course Name                                                    | L-T-P       | Credits    | Pre-<br>requisite |  |
|------------------------|----------------------------------------------------------------|-------------|------------|-------------------|--|
| EC106                  | Digital Electronics & Logic                                    | 0-0-2       | 1          | Basics of         |  |
|                        | Design Lab                                                     |             |            | Electronics       |  |
|                        |                                                                |             |            | Engineering       |  |
| Course Outcomes (CO)*: |                                                                |             |            |                   |  |
| C01:                   | To understand the digital log                                  | tic and cr  | eate vario | us systems by     |  |
|                        | using these logics.                                            |             |            |                   |  |
| CO2:                   | To develop an understanding                                    | of design   | and simula | ation of digital  |  |
|                        | logic circuits.                                                |             |            |                   |  |
| CO3:                   | To get a basic understanding of layout of electronic circuits. |             |            |                   |  |
| CO4:                   | To use the Multisim tool for design and simulation.            |             |            |                   |  |
| *The mapping of C      | CO/PO attainment/Graduate Attril                               | butes are a | at Appendi | x-A               |  |

Logic gate is a basic building block of a digital circuit. So verify the truth tables of all the logic gates on trainer kit using TTL ICs. Also verify them using multisim. Mr. Vivek wants to add two numbers in computer but computer only understands the binary numbers i.e. 0&1. So design a circuit that adds binary equivalent of two decimal numbers. Suppose there are two binary numbers as input and subtract one binary number input from other binary number input. Design the circuit using universal gates. Considering two numbers (each two bit), Design a circuit which produces the output that compares whether the number is greater than, less than or equal to the second number. A code represents each number in the sequence of integers {0...2^N-1} as a binary string of length N in an order such that adjacent



integers have code representations that differ in only one-bit position. Design a convertor that has above property. In How many ways one bit of information can be stored in computers. Design and verify at least three different methods using sequential logic circuits. In digital logic and computing, a counter is a device which stores the number of times a particular event or process has occurred in relationship to a clock signal. Design such a counter which uses a circulating shift register in which last flip flop shifts its value into the first flip flop. Also design a counter in which the inverted output of the last flip flop is connected to the input of first flip flop. Suppose there is a need to store 4 bit of data. Which device is required for this purpose also show the transfer of data in SISO, SIPO, PISO and PIPO forms. Implement a circuit and verify its operation that requires power-supply, inputs (push buttons/DIP switches) and outputs (LED/7-segment display.

### Suggested Books:

- A. Anand Kumar, Fundamentals of digital circuits, 3<sup>rd</sup> Edition, PHI.
- Thomas L. Floyd, 10<sup>th</sup> Edition, Digital Fundamentals, Pearson Publications.
- M. Morris Mano, Digital Design, 4.ed., Prentice Hall of India Pvt. Ltd., New Delhi, Sixth impression /Pearson Education (Singapore) Pvt. Ltd., New Delhi.
- Donald P. Leach and Albert Paul Malvino, Digital Principles and Applications, 5<sup>th</sup> Edition, Tata McGraw Hill Publishing Company Limited, NewDelhi, 2003.

| Course Code            | Course Name                                                      | L-T-P        | Credits                                                                | Pre-<br>requisite |  |  |
|------------------------|------------------------------------------------------------------|--------------|------------------------------------------------------------------------|-------------------|--|--|
| EC107                  | Analog Electronics                                               | 3-1-0        | 3                                                                      | Basics of         |  |  |
|                        |                                                                  |              |                                                                        | Electronics       |  |  |
|                        |                                                                  |              |                                                                        | Engineering       |  |  |
| Course Outcomes (CO)*: |                                                                  |              |                                                                        |                   |  |  |
| C01:                   | Develop the Ability to un                                        | nderstand th | ne design a                                                            | nd working of     |  |  |
|                        | BJT amplifiers                                                   |              |                                                                        |                   |  |  |
| CO2:                   | To be able to design B                                           | JT based     | circuits and                                                           | d observe the     |  |  |
|                        | amplitude and frequency r                                        | responses of | common a                                                               | mplifiers.        |  |  |
| CO3:                   | To design and develop the audio and power amplifiers using       |              |                                                                        |                   |  |  |
|                        | re and hybrid equivalent models.                                 |              |                                                                        |                   |  |  |
| CO4:                   | To develop the skill to build, and troubleshoot analog circuits. |              |                                                                        |                   |  |  |
| *The mapping of CO     | PO attainment/Graduate At                                        | tributes are | *The mapping of CO/PO attainment/Graduate Attributes are at Appendix-A |                   |  |  |

BJT introduction and operation, Common Base Configuration, Common Emitter Configuration D.C Biasing: operating point, DC analysis of BJT in CE configuration: Fixed Bias configuration, Emitter Bias Configuration, Voltage Divider Bias configuration, Emitter Follower Configuration, Common Base configuration. BJT transistor modeling and small signal ac equivalent circuit. The re transistor model in CE configuration: Voltage divider bias to calculate phase relationships. Two stage RC- Coupled BJT amplifier to calculate voltage gain, input impedance and output impedance. Hybrid Equivalent model: Complete Hybrid Equivalent model, Approximate Hybrid equivalent circuit of Common emitter with Fixed Bias and voltage Divider Bias Configuration. Approximate Hybrid equivalent circuit for Common Base configuration, Complete Hybrid circuit to find current gain, voltage gain,



input impedance and output impedance. Introduction-Definition and Amplifier Types Series-fed and Transformer-coupled class A Amplifiers Class B Amplifier Operation and Circuits, Amplifier Distortion Class C and D Amplifiers. General Frequency Consideration, Normalization Process, Low Frequency Response BJT Amplifier High Frequency Response. Construction and characteristics of JFET, Transfer characteristics and important relations with BJT, Depletion type MOSFET: Construction and characteristics, Enhancement type MOSFET: Construction and characteristics.

## Suggested Book(s)

- 'Electronic Devices and Circuit Theory' by Robert L.Boylestad and Louis Nashelsky, Pearson Publication, 10<sup>th</sup>Edition, 2009.
- 'ELECTRONIC PRINCIPLES' by<u>AlbertMalvino</u>,McGraw Hill, 7<sup>th</sup>Edition, 2006
- 'Electronic Devices & Circuits' by Millman- Halkias, Tata Mcgraw Hill
- 'Electronic Fundamentals & Application', by J.D. Ryder, PHI.Electronic Devices, by Floyd, Pearson Education.

| <b>Course Code</b>     | Course Name                                                            | L-T-P                                                        | Credits     | Pre-requ      | isite  |  |
|------------------------|------------------------------------------------------------------------|--------------------------------------------------------------|-------------|---------------|--------|--|
| EC108                  | Analog Electronics                                                     | 0-0-2                                                        | 1           | Basics        | of     |  |
|                        | lab                                                                    |                                                              |             | electronics   | 5      |  |
|                        |                                                                        |                                                              |             | engineerin    | g      |  |
|                        |                                                                        |                                                              |             | lab           |        |  |
| Course Outcomes (CO)*: |                                                                        |                                                              |             |               |        |  |
| CO1:                   | To be able to read a                                                   | nd interpre                                                  | et electron | ic datasheets | s and  |  |
|                        | diagrams.                                                              |                                                              |             |               |        |  |
| CO2:                   | To be able to measure                                                  | the electro                                                  | onics & ele | ctrical paran | neters |  |
|                        | of an amplifier like vo                                                | of an amplifier like voltage gain, input & output impedance. |             |               |        |  |
| CO3:                   | To design, construc                                                    | t and tro                                                    | ubleshoot   | transistor    | based  |  |
|                        | amplifier complex elec                                                 | amplifier complex electronic circuits.                       |             |               |        |  |
| *The manning of        | *The mapping of CO/PO attainment/Graduate Attributes are at Appendix-A |                                                              |             |               |        |  |

\*The mapping of CO/PO attainment/Graduate Attributes are at Appendix-A Familiarization with Cathode Ray Oscilloscope, Function Generator and Power Supply.

Familiarization with Cathode Ray Oscilloscope, Function Generator and Power Supply. Study and analysis of Fixed base biasing with & without Emitter Resistor and collector to Base Biasing of BJT. Study and analysis of Fixed Bias/Self Bias Circuit and Voltage Divider Bias of BJT. To plot the frequency response of Single Stage Common Emitter (CE) Amplifier and calculate its gain and bandwidth. To plot the frequency response of Single stage CB (Common Base) Amplifier and calculate its gain and bandwidth. To plot the frequency response of Single stage CC (Common Collector) Amplifier and calculate its gain and bandwidth. To Calculate the gain and bandwidth of CE amplifier with feedback and without feedback BJT Class A power amplifier-To simulate and verify the efficiency of BJT Class A Power amplifier circuit. BJT Class B Push pull Power amplifier. BJT Class AB power amplifier- To simulate and verify the efficiency of class C power amplifier. BJT Class C power amplifier - To simulate and verify the efficiency of class C power amplifier. BJT Complementary Symmetry Push pull power amplifier - To simulate



and verify the efficiency of Transistor Complementary Symmetry Push pull power amplifier. BJT Two stage RC Coupled Amplifier - To plot the frequency response of Two stage RC Coupled Amplifier and calculate its gain and bandwidth. To Study VI characteristics of Field Effect Transistor (FET). To Study VI characteristics of Metal Oxide Semiconductor Field Effect Transistor (MOSFET).

## Suggested Book(s)

- 'Electronic Devices and Circuit Theory' by Robert L.Boylestad and Louis Nashelsky, Pearson Publication, 10<sup>th</sup>Edition, 2009.
- 'ELECTRONIC PRINCIPLES' by<u>AlbertMalvino,</u>McGraw Hill, 7<sup>th</sup>Edition, 2006
- 'Electronic Devices & Circuits' by Millman- Halkias, Tata Mcgraw Hill
- 'Electronic Fundamentals & Application', by J.D. Ryder, PHI.Electronic Devices, by Floyd, Pearson Education.

| Course Code                                                                             | Course Name                                                                       | L-T-P           | Credits    | Pre-requisite           |  |
|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------|------------|-------------------------|--|
| EC109                                                                                   | Microprocessor and                                                                | 3-1-0           | 3          | Digital                 |  |
|                                                                                         | Micro-controller                                                                  |                 |            | Electronics             |  |
|                                                                                         |                                                                                   |                 |            | and Logic               |  |
|                                                                                         |                                                                                   |                 |            | Design                  |  |
| Course Outcomes (CO)*:                                                                  |                                                                                   |                 |            |                         |  |
| C01:                                                                                    | After completing the                                                              | e course st     | udents w   | vill be able to         |  |
|                                                                                         | differentiate between the real time applications of                               |                 |            |                         |  |
|                                                                                         | microprocessor and a microcontroller.                                             |                 |            |                         |  |
| CO2:                                                                                    | The student will be able to design a memory and I/O interface                     |                 |            |                         |  |
|                                                                                         | aspects for an 8085-based computer systems.                                       |                 |            |                         |  |
| CO3:                                                                                    | Students will develop the knowledge regarding architecture                        |                 |            |                         |  |
|                                                                                         | and peripheral configuration of STM32L476.                                        |                 |            |                         |  |
| CO4:                                                                                    | Students will be able                                                             | to write em     | bedded C   | code to develop         |  |
|                                                                                         | applications using I/O                                                            | ports, timers   | and other  | r peripherals of a      |  |
|                                                                                         | microcontroller.                                                                  |                 |            |                         |  |
| *The mapping of CO                                                                      | D/PO attainment/Graduat                                                           | te Attributes a | are at App | endix-A                 |  |
| Introduction to a compute                                                               | er system, Central proce                                                          | essing unit, N  | Microproc  | essor and Micro-        |  |
| controller, Pin diagram of                                                              | 8085 and pin functions                                                            | s, Functional   | Blocks of  | $18085 \ \mu P$ and its |  |
| architecture Programming                                                                | g model, Introduction                                                             | to instruction  | n set, Ac  | ldressing modes,        |  |
| Assembly language progra                                                                | amming for 8085- decis                                                            | ion making a    | nd looping | g, Stack and sub-       |  |
| routines, Timing diagrams                                                               | s for opcode fetch, De-r                                                          | nultiplexing    | address/ d | ata bus, Memory         |  |
| interfacing, Timing diagra                                                              |                                                                                   |                 | -          |                         |  |
| Interrupt System of 8085, Interrupt process for vectored interrupts, Use of SIM and RIM |                                                                                   |                 |            |                         |  |
| instructions, Serial Commu                                                              | inication with 8085- tran                                                         | nsmitting and   | receiving  | a character under       |  |
| program control, Overview                                                               | program control, Overview of STM32L4 Series, Block diagram, Introduction to STM32 |                 |            |                         |  |

ARM Core(ARM Cortex-M4), Architecture diagram of STM32L476, STM32 Configuration- Clock Distribution, GPIO Pins, Asynchronous Serial Communication, SPI, I<sup>2</sup>C, Programming STM32L4 Timers- PWM Output and Input Capture, Interrupt Programming- Cortex M4 exception model, Enabling interrupts and setting their priority, NVIC configuration, Handling timer interrupts, external interrupts, Configuring Analog-todigital converter to read analog inputs, Low power modes of operation in STM32. **Suggested Books:** 

- Ramesh S. Gaonkar, "Microprocessor Architecture, Programming and Applications with 8085", Prentice Hall, 2002.
- Geoffrey Brown, "Discovering the STM32 Microcontroller", Indiana University, 2016.
- Joseph Yiu, "The Definitive Guide to ARM Cortex- M3 and Cortex- M4 Processors", Elsevier, First Edition(2014)
- Donald Norris, "Programming with STM32: Getting Started with the Nucleo Board and C/C++", McGraw-Hill Education TAB; 1 edition (21 March 2018)

| Course Code            | Course Name                                                     | L-T-P                                                            | Credits     | Pre-<br>requisite |
|------------------------|-----------------------------------------------------------------|------------------------------------------------------------------|-------------|-------------------|
| EC110                  | Microprocessor and                                              | 0-0-2                                                            | 1           | Digital           |
|                        | Microcontroller Lab                                             |                                                                  |             | Electronics       |
|                        |                                                                 |                                                                  |             | and Logic         |
|                        |                                                                 |                                                                  |             | Design            |
| Course Outcomes (CO)*: |                                                                 |                                                                  |             |                   |
| C01:                   | After the completion of the                                     | After the completion of this lab course students will be able to |             |                   |
|                        | handle the technical issue                                      | handle the technical issues during the programming and also      |             |                   |
|                        | able to evaluate possible                                       | able to evaluate possible causes of discrepancy in practical     |             |                   |
|                        | experimental observations.                                      |                                                                  |             |                   |
| <b>CO2:</b>            | The students will be able to write a program in assembly        |                                                                  |             |                   |
|                        | language to perform the                                         | specific ta                                                      | isk like ar | ithmetic and      |
|                        | logical operations, ON/OFF procedure for an LED pattern etc.    |                                                                  |             |                   |
| CO3:                   | Student will be able to und                                     | Student will be able to understand how to Interface the external |             |                   |
|                        | devices to the controller according to the user requirements to |                                                                  |             |                   |
|                        | create novel products and solutions for the real time problems  |                                                                  |             |                   |
| *The mapping of C      | O/PO attainment/Graduate Att                                    | ributes are a                                                    | t Appendix  | -A                |

8085-based experiments: Study of 8085 Microprocessor kit, Addition and subtraction of two 8-bit/ 16-bit numbers, Detection of Even/ Odd numbers, Multiplication of two 8-bit numbers, Writing subroutines, Using IN/ OUT instructions, Interrupt programming, STM32-based experiments: Introduction to STM32 kit and STM32CUBE software, Blinking LEDs connected to a port, Interfacing a push-button, Writing code for multitasking applications, Configure a timer to generate a signal of any given frequency, Generate a PWM signal with a given duration as well as duty cycle, Using interrupt feature on a GPIO pin, Using a timer in interrupt mode, Reading an analog signal and generate a PWM signal of varying duty cycle, Display a message on 16 X 2 LCD display in 8-bit mode, Controlling the backlight of the LCD using a low-power mode.

- **Suggested Books:** 
  - Ramesh S. Gaonkar, "Microprocessor Architecture, Programming and Applications



with 8085", Prentice Hall, 2002.

- Geoffrey Brown, "Discovering the STM32 Microcontroller", Indiana University, 2016.
- Joseph Yiu, "The Definitive Guide to ARM Cortex- M3 and Cortex- M4 Processors", Elsevier, First Edition(2014).
- Donald Norris, "Programming with STM32: Getting Started with the Nucleo Board and C/C++", McGraw-Hill Education TAB; 1 edition (21 March 2018)

| Course Code            | Course Name                | L-T-P       | Credits     | Pre-<br>requisite |
|------------------------|----------------------------|-------------|-------------|-------------------|
| EC111                  | Signals and Systems        | 3-1-0       | 3           | NIL               |
| Course Outcomes (CO)*: |                            |             |             |                   |
| CO1:                   | Categorize various type    | s of sign   | als and s   | ystems as         |
|                        | continuous/ discrete.      |             |             |                   |
| CO2:                   | Apply various transform    | s in analy  | rsis of sys | tems with         |
|                        | different input signals.   |             |             |                   |
| CO3:                   | Interpretation of the beha | aviour of 1 | Linear time | e invariant       |
|                        | systems (Continuous &      | Discrete)   | in terms    | of system         |
|                        | stability and response.    |             |             |                   |

\*The mapping of CO/PO attainment/Graduate Attributes are at Appendix-A

Introduction to Signals and Systems:Introduction to Signal -Continuous Time, Discrete Time; Introduction to System-Continuous and Discrete Time, Introduction to frequency domain analysis of Continuous Time and discrete time signals and systems, importance of signals and systems, Continuous Time Signals: standard continuous time signals, Classification of continuous time signals, Mathematical Operations on CT, Mathematical equation governing CT system, block diagram representation of CT system, Classifications of Continuous Time System, Response of LTI systems in CT in time domain, Convolution of CT, Discrete Time Signals: Sampling of Continuous Time Signals, standard discrete time signals, Classification of discrete time signals, Mathematical Operations on DT, Mathematical equation governing DT system, block diagram representation of DT system, Classifications of Discrete Time System, Response of LTI systems in DT in time domain, Convolution of DT, Correlation, Cross-correlation and Autocorrelation. Review of Laplace transform with properties for analysis of CT systems, Pole zero analysis in Laplace transform, Review of Fourier series and Fourier transform for analysis of CT systems, Fourier transform of some important signals, Z-Transform: Introduction, ROC, Summary of Properties of Z-transform, Poles and zeros of rational function of Z-Transform, Inverse Z-transform.

- 'Signals and Systems' by A NagoorKani, ISBN: 978-0-07-015139-0, McGraw Hill Education, First Edition, Copyright © 2010.
- Signals and Systems' by Tarun Kumar Rawat, ISBN: 978-0-19-806679-8, Oxford University Press, First Edition, Copyright © 2010.
- 'Principles of Linear Systems and Signals' by B. P. Lathi, ISBN: 978-0-19-



806227-1, Oxford University Press, First Edition, Copyright © 2009.

• 'Digital Signal Processing' by S Salivahanan, C Gnanapriya, 2nd edition, Tata McGraw-Hill, ISBN:9780070669246, 2, 2013.

| Course Code         | Course Name                                               | L-T-P      | Credits     | Pre-<br>requisite |
|---------------------|-----------------------------------------------------------|------------|-------------|-------------------|
| EC113               | Measurement and Virtual                                   | 0-0-2      | 1           | NIL               |
|                     | Instrumentation lab                                       |            |             |                   |
| Course Outcomes (CO | )*:                                                       |            |             |                   |
| CO1:                | The students will be able to de                           | esign any  | instrumenta | tion based        |
|                     | project.                                                  |            |             |                   |
| CO2:                | The students will be able to si                           | imulate an | y type of s | ignals and        |
|                     | check performance of any circuit based on these simulated |            |             |                   |
|                     | signals.                                                  |            |             |                   |

\*The mapping of CO/PO attainment/Graduate Attributes are at Appendix-A Introduction to LabVIEW software: LabVIEW components, function pallette, control pallete, loops and structures, waveform graphs, SubVI, Debugging techniques, Icon editor, formula node. Virtual Instrumentation: Creating a virtual instrument using LabVIEW. Different types of Waveform generation and analyze the signals by measuring amplitude, frequency and phase variations using soft front panel instruments (CRO, FGEN, DMM), introduction to ELVIS-II. Measurement of instantaneous, peak to peak and average value of voltage, period and phase angle using oscilloscope and Lissajous pattern using LabVIEW. Sources of error in measurements and its statistical analysis: Measurement of resistances of resistors of same color coded values using DMM SFP and investigates errors (Gross error, systematic error and random error) in measurements and statistical analysis using waveform graph. Introduction to control system toolbox of LabVIEW: Stability test of series parallel circuit using LabVIEW, generation of Bode plot, Nyquist plot, Root locus plot of the given transfer function. Obtain the responses of the systems i.e. proportional (P), the integral (I), and the derivative (D), PID control system. Potentiometers: Designing of input- output characteristics of a potentiometer and use two potentiometers as an error detector by a comparison of the reference and the output that will perform the crucial task of comparing the reference and output signals. Synchro set and servo system: Implementation of transmitter- receiver characteristics of a synchro set. Analysis of the operation of DC positional servo system and investigate the effect of damping and supply voltage on its response. Analysis of the operation of an AC position servo-system and obtain effects of supply voltage and system parameter on its transient response.

- Lab Manual prepared by faculty of ECE Department.
- LabVIEW based advanced instrumentation system by S. Sumathi and P. Surekha, springer.

| Course       | Course Name                                                                            | L-T-P         | Credits       | Pre-         |
|--------------|----------------------------------------------------------------------------------------|---------------|---------------|--------------|
| Code         |                                                                                        |               |               | requisite    |
| EC135        | Network Analysis & Control Systems                                                     | 3-1-0         | 3             | NIL          |
| Course Ou    | tcomes (CO)**:                                                                         | 1             |               |              |
| CO1:         | Develop the skill of network reduction and                                             | circuit analy | sis using Ki  | rchhoff's    |
|              | law and network simplification theorems                                                |               |               |              |
| CO2:         | Understand the operation of automatic cont                                             | rol systems   | employed in   | various      |
|              | real life applications.                                                                |               |               |              |
| CO3:         | <b>CO3:</b> Carry out both time domain as well as frequency domain analysis of control |               |               |              |
|              | systems using Laplace transform and differ                                             | ent plots.    |               |              |
| *The mapp    | ing of CO/PO attainment/Graduate Attributes                                            | s are at Appe | endix-A       |              |
| Circuit Ana  | alysis and DC Theorems: The circuit, Energy                                            | Sources, K    | irchhoff's V  | oltage Law,  |
| Voltage di   | vision, Kirchhoff's current law, Current div                                           | vision, Mesh  | Analysis, S   | Super Mesh   |
| Analysis, N  | lodal Analysis, Super node analysis, source                                            | transformati  | on technique  | e, wye-delta |
| transformat  | ion, DC theorems: Network theorems for inc                                             | lependent D   | C source -Su  | uperposition |
| theorem, T   | hevenin's theorem, Norton's theorem, Max                                               | imum Powe     | er Transfer t | heorem for   |
| DC circuit   | s, Time and Frequency domain analysis: Im                                              | pedance di    | agram, phas   | or diagram,  |
| series circ  | cuits, parallel circuits, complex admittance                                           | ces, complex  | . Impedanc    | es, Laplace  |
| transform of | of some useful functions, Analysis of RLC                                              | C circuits us | sing Laplace  | transform,   |
| Analysis o   | f RL, RC circuits using Laplace transfor                                               | rm, Introduc  | tion and M    | lathematical |
| Modeling,    | The control System, , Open loop control system                                         | stem, closed  | loop systen   | ns with real |
| time annli   | nations transfor function Mathematical mas                                             | Joling Mach   | onical ( tran | lational) P- |

time applications, transfer function, Mathematical modeling Mechanical( translational) & electrical system, control system components-potentiometer, synchro, tachometer, Block diagram Algebra. Time Domain Analysis, Classification or time responses, system time response, analysis of steady state error, Type of input and steady state error, Analysis of first order system. Stability Concept of stability, Routh-Hurwitz criterion, Routh's stability criterion, Applications, Advantages and limitations of Routh's criterion, Root locus concepts, construction root locii, Gain margin and Phase margin.

- Network Analysis and Synthesis by Sudhakar Sham Mohan, Tata McGraw Hill Publication Fourth Edition, 2004.
- Control Systems' by Samarjit Ghosh, 2<sup>nd</sup>edition, Pearson Education, ISBN 978-81-317-5837-3.

| Course Code           | Course Name                                                    | L-T-P      | Credits     | Pre-<br>requisite |
|-----------------------|----------------------------------------------------------------|------------|-------------|-------------------|
| EC114                 | Microelectronic Circuits                                       | (3-1-0)    | 3           | Analog            |
|                       |                                                                |            |             | Electronics       |
| Course Outcomes (CO)* |                                                                |            |             |                   |
| C01:                  | After completion of the                                        | course, st | udents will | be able to        |
|                       | construct and apply physical model to determine the electrical |            |             |                   |
|                       | characteristic and operation principle of microelectronic      |            |             |                   |
|                       | devices.                                                       |            |             |                   |

| CO2: | Design digital as well as analog circuits using CMOS technology.                         |
|------|------------------------------------------------------------------------------------------|
| CO3: | Students will apply the concept of IC fabrication to create layouts of digital circuits. |

MOS Theory-Evolution of MOS, MOS structure without and with external bias, Structure and Operation of MOS Transistor, Threshold voltage, Gradual channel approximation, channel length modulation, MOSFET Capacitances. Circuit designing: Introduction to circuit designing, CMOS Inverter: representation, CMOS working, DC-characteristics, Logic gates designing using CMOS logic and Pseudo nMOS logic, CMOS transmission gates and complementary pass transistor logic, SR Latch circuit, SR flip-flop designing, D Flip Flop designing using CMOS and AOI logic, CMOS dynamic circuits, Domino logic, NP domino logic, Zipper domino logic. Introduction to memory design, Operation of one Transistor DRAM Cell, Operation of 6-T SRAM cell, Overview of power consumption. Introduction, Fabrication Process Flow: Basic steps, Fabrication of nMOS transistor, Layout Design Rules, Full custom mask layout design:, silicon on Insulator, floating body voltage, SOI advantages and disadvantages,. Analog Integrated Circuit Design Techniques: Small signal model for the MOS Transistor, Common source, Common drain and Common Gate Amplifiers, Introduction to Current mirror circuit, DC Analysis of MOS Transistor Current Mirror, Changing MOS mirror ratio.

- Sung-Mo Kang and Yusuf Leblebici, "CMOS Digital Integrated Circuits Analysis and Design", Tata McGraw Hill, 3<sup>rd</sup> Edition, 2005.
- Richard C. Jaeger, Travis N. Blalock, "Microelectronic Circuit Design", McGraw-Hill, 4<sup>th</sup> edition, 2011.
- Donald A Neamen, "Semiconductor Physics and Devices", Mc Graw- Hill, 4<sup>th</sup> edition,2011.
- Neil H. E. Weste and Kamran Eshraghian, "Principles of CMOS VLSI design", Pearson, 3<sup>rd</sup> edition, 2005.

| Course Code            | Course Name                | L-T-P                                                   | Credits      | Pre-<br>requisite |  |
|------------------------|----------------------------|---------------------------------------------------------|--------------|-------------------|--|
| EC115                  | Microelectronic            | 0-0-2                                                   | 1            | Analog            |  |
|                        | Circuits lab               |                                                         |              | Electronics       |  |
|                        |                            |                                                         |              | lab               |  |
| Course Outcomes (CO)*: |                            |                                                         |              |                   |  |
| C01:                   | Students will acquire hand | ls on experi                                            | ence of ind  | lustry oriented   |  |
|                        | circuit designing tools.   |                                                         |              |                   |  |
| CO2:                   | Students will be able to   | design diff                                             | ferent digit | al and analog     |  |
|                        | circuits and verify the sa | me through                                              | n simulatio  | on on cadence     |  |
|                        | design tool.               |                                                         |              |                   |  |
| CO3:                   | Capable of designing la    | Capable of designing layouts of the designed circuit in |              |                   |  |
|                        | accordance with layout des | sign rules.                                             |              |                   |  |



Introduction to VLSI design techniques and VLSI design flow for Digital and Analog IC designing. Introduction to Cadence design flow. Analysis of NMOS and PMOS transistors, Schematic and Layout Designing and Analysis (Transient, DC) of CMOS inverter. Schematic Designing and Analysis (Transient) of Pseduo n-mos inverter. Schematic and Layout Designing and Analysis (Transient) of Digital gates with CMOS logic. Schematic and Layout Designing and Analysis of SR and D- Flip Flops. Designing and Analysis Differential Amplifier with MOS Logic. Designing and Analysis of MOS based Amplifiers (Common Source, Common Drain, Common Gate). Design Analysis of MOS based Analog Multiplier.

### Suggested Book(s)

- Sung-Mo Kang and Yusuf Leblebici, "CMOS Digital Integrated Circuits Analysis and Design", Tata McGraw Hill, 3<sup>rd</sup> Edition, 2005.
- Richard C. Jaeger, Travis N. Blalock, "Microelectronic Circuit Design", McGraw-Hill, 4<sup>th</sup> edition, 2011.
- Donald A Neamen, "Semiconductor Physics and Devices", Mc Graw- Hill, 4<sup>th</sup> edition,2011.
- Neil H. E. Weste and Kamran Eshraghian, "Principles of CMOS VLSI design", Pearson, 3<sup>rd</sup> edition, 2005.

| Course Code            | Course Name                                                   | L-T-P       | Credits     | Pre-<br>requisite |
|------------------------|---------------------------------------------------------------|-------------|-------------|-------------------|
| EC118                  | Digital Signal Processing                                     | 3-1-0       | 3           | Signal and        |
|                        |                                                               |             |             | Systems           |
| Course Outcomes (CO)*: |                                                               |             |             |                   |
| CO1:                   | Identify different types of discrete signals, implement these |             |             | lement these      |
|                        | signals on different systems using z transform, Discrete      |             |             |                   |
|                        | Fourier Transform and Fast fourier Transform.                 |             |             |                   |
| CO2:                   | Student can apply knowledge to design and filters and         |             |             |                   |
|                        | implement them for signal p                                   | rocessing   | application | ns.               |
| CO3:                   | Apply the knowledge to                                        | design a    | nd analyse  | e a practical     |
|                        | discrete-time signal system, such as a radar, image, speech,  |             |             |                   |
|                        | audio, bio-medical or wireless system                         |             |             |                   |
| *The mapping of CO/P   | O attainment/Graduate Attrib                                  | utes are at | Appendix    | -A                |

Discrete and Fast Fourier Transforms: DFT, Relationship between DFT and other transforms DFT, Properties of DFT, Relation between DFT and Z-Transform, Analysis of LTI discrete time system using DFT, DFT as a Linear Transformation, Fast Fourier Transform, Radix-2 (DIT), Fast Fourier Transform, Radix-2 (DIF) Computing an Inverse DFT using FFT. Finite Impulse Response Filters: Magnitude and phase response of a digital filters, Frequency response of linear phase FIR filters (case 1 only), Design Techniques for FIR filters using Window method Design techniques for FIR filters using Frequency response of Analog and digital IIR Filter, Infinite Impulse Response Filters: Introduction, Frequency



response of Analog and digital IIR Filter IIR filter Design by Impulse Invariant Method, Bilinear Transformation, Butterworth filters, Chebyshev Filters Realization of Digital Filters: Basic Structures for IIR Systems – Direct Form I, Direct Form II, Cascade Structure, Parallel Realization of IIR System, Basic Structures for FIR system. Effects of Finite Word Length in Digital Filters: Introduction, Rounding and Truncation Errors, Quantization effects in analog to digital conversion of signals Applications of DSP: Introduction, Applications of DSP in Biomedical Signal Processing, Radar Image Processing, Overview of TMS320 Family DSP Processors.

### Suggested Books:

- Digital Signal Processing' by Salivahan and Gnanapriya, fifth reprint-2013 Tata McGraw- Hill Education private limited.
- Digital signal processing, 3rd edition by Sanjit K. Mitra, Tata McGraw Hill, 2001
- Digital Signal Processing' by John G. Proakis, Dimitris G. Manoiaias, Prentice Hall of India pvt. Ltd., 4th edition.

| Course Code            | Course Name L-T-P Credits Pre-                                         |       |   |           |  |
|------------------------|------------------------------------------------------------------------|-------|---|-----------|--|
|                        |                                                                        |       |   | requisite |  |
| EC119                  | Digital Signal Processing                                              | 0-0-2 | 1 | Signal    |  |
|                        | Lab                                                                    | and   |   |           |  |
|                        |                                                                        |       |   |           |  |
| Course Outcomes (CO)*: |                                                                        |       |   |           |  |
| CO1:                   | To understand and analyze the different types of signals in            |       |   |           |  |
|                        | time domain and frequency domain.                                      |       |   |           |  |
| CO2:                   | To design and implement the characteristics of the digital             |       |   |           |  |
|                        | filters (FIR and IIR).                                                 |       |   |           |  |
| CO3:                   | Can apply skill of programming using MATLAB to develop                 |       |   |           |  |
|                        | the computation of Transforms and convolution .                        |       |   |           |  |
| *The menning of CO/D   | *The menning of CO/PO ettainment/Creducte Attributes are at Annendiv A |       |   |           |  |

\*The mapping of CO/PO attainment/Graduate Attributes are at Appendix-A

Introduction to MATLAB, write a MATLAB program (a) to generate unit impulse sequence, unit step sequence, ramp sequence and exponential. (b) to generate time shifted signal, time scaled signal, folded signal. (a)Computation of N- point DFT of a discrete time signal and plot the magnitude and phase response using direct approach. (b)Computation of N- point DFT of a discrete time signal and plot the magnitude and phase response using FFT. Compute linear convolution of two discrete time sequences. Compute circular convolution of two discrete time sequences. a) Computation of z transform in factored form. b) Verification of pole zero analysis using transfer function. Design and implementation of FIR filter using rectangular window. Design Butterworth low pass and high pass filter with the given specifications. Find the autocorrelation and cross correlation coefficients of discrete time signals. Program for up sampling a discrete sequence by factor L. Program for down sampling a discrete sequence by factor L.

### **Suggested Books:**

• Digital Signal Processing' by Salivahan and Gnanapriya, fifth reprint-2013 Tata McGraw- Hill Education private limited.



- Digital signal processing, 3rd edition by Sanjit K. Mitra, Tata McGraw Hill, 2001
- Digital Signal Processing' by John G. Proakis, Dimitris G. Manoiaias, Prentice Hall of India pvt. Ltd., 4th edition.

| Course<br>Code | Course Name                                                               | L-T-P     | Credits     | Pre-<br>requisite |  |
|----------------|---------------------------------------------------------------------------|-----------|-------------|-------------------|--|
|                |                                                                           |           |             | -                 |  |
| EC129          | Application Development using                                             | 0-0-8     | 4           | NIL               |  |
|                | Python                                                                    |           |             |                   |  |
| Course Outc    | comes (CO)*:                                                              |           |             |                   |  |
| CO1:           | Choose the appropriate Python progra                                      | amming co | onstructs t | o solve the       |  |
|                | problems.                                                                 |           |             |                   |  |
| CO2:           | Demonstrate the advantages and disadvantages of specific techniques to be |           |             |                   |  |
|                | used.                                                                     |           |             |                   |  |
| CO3:           | Differentiate between efficient and inefficient way of programming.       |           |             |                   |  |
| CO4:           | Determine and demonstrate bugs in a program and recognize needed basic    |           |             |                   |  |
|                | operations.                                                               |           |             |                   |  |
| CO5:           | Formulate new solutions for programming problems or improve existing      |           |             |                   |  |
|                | code to program effectively.                                              |           |             |                   |  |

Introduction to Python Python environment setup, identifiers, reserved words, lines and indentation, multiline statements, quotation, comments, Python variable types, assigning values to variables, Multiple assignment, python strings and numbers, Python basic operators- arithmetic, comparison, assignment operators, logical operators, Basics of Bitwise operator, Python decision making-if statements, while loop, for loop, Python functions - Calling a function, Python strings- accessing values in strings, updating strings, string special characters, string special operators, triple quotes, built in string methods, Python date & time – Tick, Time Tuple, getting time, getting calendar for a month, time module, calendar module. Python Files I/O and Directories- Input function, opening and closing files, reading and writing files, Directories in python - mkdir() method, chdir() method, getcwd() method, rmdir() method. Exploring Object-Oriented Programming in Python-Introduction, Creating classes, objects, attributes, Introduction to GUI Programming Basics of GUI programming, Role of GUI programming in python, Tkinter programming- Tkinter widgets – Button, canvas, check button, entry, frame, label, list box, menu button, message, scale, scrollbar Tkinter standard attributes - Dimensions, colors, fonts Tkinter geometry management, Basics of Raspberry Pi- Usage of Raspberry Pi with Python.

- Kenneth A. Lambert, The Fundamentals of Python: First Programs, 2011, Cengage Learning, ISBN: 978-1111822705.
- T.R. Padmanabhan, Programming with Python, Springer, 1st Ed., 2016



| Course        | Course Name                                                                      | L-T-P        | Credits     | Pre-          |  |  |  |
|---------------|----------------------------------------------------------------------------------|--------------|-------------|---------------|--|--|--|
| Code          |                                                                                  |              |             | requisite     |  |  |  |
| EC137         | Embedded System and IoT3-1-03NIL                                                 |              |             |               |  |  |  |
| Course Outo   | comes (CO)*:                                                                     | L            |             |               |  |  |  |
| CO1:          | The students would be able to under                                              | stand fund   | amental c   | oncepts and   |  |  |  |
|               | technologies related to embedded system                                          | and IoT ba   | sed device  | s.            |  |  |  |
| CO2:          | The students would be able to understan                                          | d the fund   | amentals o  | of RTOS and   |  |  |  |
|               | application development techniques.                                              |              |             |               |  |  |  |
| CO3:          | The students would be able to understan                                          | d the vario  | ous commu   | nication and  |  |  |  |
|               | networking protocols used for developing                                         | g IoT enable | ed devices. |               |  |  |  |
| *The mappin   | g of CO/PO attainment/Graduate Attributes                                        | s are at App | pendix-A    |               |  |  |  |
| Introduction  | to embedded systems: embedded system                                             | n, embedd    | ed system   | v/s general   |  |  |  |
| computing sy  | stem, core of the embedded system, embed                                         | lded hardw   | are units a | nd devices in |  |  |  |
| the system, c | lesign process in embedded system, embed                                         | lded firmw   | are design  | approaches,   |  |  |  |
| embedded f    | irmware development languages. Proces                                            | ssor and     | memory      | organization, |  |  |  |
| instruction   | level parallelism, performance metrics                                           | of a pro     | ocessor. I  | Devices and   |  |  |  |
| communicati   | on interfaces: timer and counting devices,                                       | watchdog     | timer, rea  | l time clock, |  |  |  |
|               | nunication protocols: uart, spi, i2c. B                                          |              | 0           |               |  |  |  |
|               | s: Interrupts: Basics, Interrupt request, Ro                                     |              | -           | -             |  |  |  |
|               | Context switching during Interrupts, No                                          | -            | -           |               |  |  |  |
| <b>1</b>      | ving shared-data problem with and withou                                         | 0            | <b>1</b>    |               |  |  |  |
|               | ion of the code, Interrupt latency Software                                      |              |             |               |  |  |  |
|               | without and with Interrupts, Function-Que                                        |              | -           |               |  |  |  |
| -             | ing System (RTOS): Basic concepts: Ta                                            |              |             |               |  |  |  |
|               | of scheduler, Preemptive and Non preemptive                                      |              |             | -             |  |  |  |
|               | phores and Solving shared data problem wi                                        | -            |             |               |  |  |  |
| -             | ting and mutex, Concept of Reentrancy an                                         |              |             |               |  |  |  |
| - •           | rsion and priority inheritance protocol. I                                       |              |             |               |  |  |  |
|               | gn of IoT, Logical design of IoT IoT enabl                                       |              |             |               |  |  |  |
|               | Networks, Cloud Computing, Big data analytics, Communication Protocols, Embedded |              |             |               |  |  |  |
| •             | System IoT levels and deployment templates, M2M, Difference between IoT and M2M. |              |             |               |  |  |  |
|               | · IoT Messaging Protocols for IoT: MQ T                                          | •            | -           |               |  |  |  |
|               | Application Protocol (CoAP). Addressing                                          | Protocols 1  | or $101:1P$ | v4, IPv6 and  |  |  |  |
| URI.          | a a lua                                                                          |              |             |               |  |  |  |
| Suggested B   | OOKS                                                                             |              |             |               |  |  |  |

- Embedded Systems Architecture, Programming and Design' by Raj Kamal, Second Edition, Third Edition, Mc-Graw Hill Education. ISBN: 978-93-329-0149-0
- An Embedded Software Primer' by David E Simon, Pearson. ISBN: 978-02-016-1569-2
- Introduction to Embedded Systems' by Shibu KV, Mc Graw Hill Education. ISBN: 978-93- 392-1968-0
- 'Internet of Things: A Hands-On Approach' by ArshdeepBahga and Vijay

Madisetti, Universities Press. ISBN: 978-81-7371-954-7

• 'Internet of Things' by S.K. Vasudevan, A.S. Nagarajan and R.M.D. Sundaram, Wiley. ISBN: 978-81-265-7837-5

| Course                                                                             | Course Name                                | L-T-P        | Credits      | Pre-          |  |
|------------------------------------------------------------------------------------|--------------------------------------------|--------------|--------------|---------------|--|
| Code                                                                               |                                            |              |              | requisite     |  |
| EC138                                                                              | Embedded system & IoT lab                  | 0-0-2        | 1            | NIL           |  |
| <b>Course Outc</b>                                                                 | omes (CO)*:                                |              |              |               |  |
| CO1:                                                                               | Design the various application-oriented en | mbedded s    | ystem and    | IoT devices.  |  |
| <b>CO2:</b>                                                                        | Implement different communication and      | d networki   | ing protoc   | ols used for  |  |
|                                                                                    | developing IoT enabled devices.            |              |              |               |  |
| *The mappin                                                                        | g of CO/PO attainment/Graduate Attributes  | s are at App | pendix-A     |               |  |
| Program usin                                                                       | ng STM32L475E IOT Discovery kit for        | r LED Bl     | inking. Pro  | ogram using   |  |
| STM32L475                                                                          | E IOT Discovery kit for controlling LED v  | vith push b  | utton. 3 In  | troduction to |  |
| Tera Term                                                                          | and Programfor printing Hello World        | on Tera      | Term. Pro    | ogram using   |  |
| STM32L475                                                                          | E IOT Discovery kit for reading the analog | og values f  | rom poten    | tiometer and  |  |
| display the v                                                                      | alues on Tera Term. Study the temperature  | re and hun   | nidity sense | or (HTS221)   |  |
| available on STM32L475E IOT Discovery kit and Program for reading the temperature  |                                            |              |              |               |  |
| and humidity values using STM32L475E IOT Discovery kit. Study the barometer sensor |                                            |              |              |               |  |
| (LPS22HB) available on STM32L475E IOT Discovery kit and Program for reading the    |                                            |              |              |               |  |
| pressure values using STM32L475E IOT Discovery kit. Study the 3D accelerometer     |                                            |              |              |               |  |
| sensor (LIS3                                                                       | MDL) available on STM32L475E IOT           | Discovery    | kit and      | Program for   |  |
| reading the 3                                                                      | D accelerometer sensor values using STM    | M32L475E     | IOT Disc     | overy kit. b) |  |

reading the 3D accelerometer sensor values using STM32L475E IOT Discovery kit. b) Study the 3D gyroscope (LSM6DSL available on STM32L475E IOT Discovery kit and Program for reading the 3D gyroscope sensor values using STM32L475E IOT Discovery kit. c) Study the High-performance 3-axis magnetometer sensor (LIS3MDL) available on STM32L475E IOT Discovery kit and Program for reading the 3-axis magnetometer sensor values using STM32L475E IOT Discovery kit. Program using STM32L4 Discovery kit IOT node for display time and date using RTC. Program using STM32L4 Discovery kit IOT node for Bluetooth low energy (BLE)-Heart Rate. Program using STM32L4 Discovery kit IOT node for Wi -Fi HTTP server. b) Program using STM32L4 Discovery kit IOT node for Wi -Fi Client server. Program using STM32L4 Discovery kit IOT node for Wi -Fi Client server. Program using STM32L4 Discovery kit IOT node for Wi -Fi Client server. Program using STM32L4 Discovery kit IOT node for Wi -Fi Client server. Program using STM32L4 Discovery kit IOT node for Pelion LWM2M communication protocol. Program using STM32L4 Discovery kit IOT node for Amazon web services.

- Embedded Systems Architecture, Programming and Design' by Raj Kamal, Second Edition, Third Edition, Mc-Graw Hill Education. ISBN: 978-93-329-0149-0
- An Embedded Software Primer' by David E Simon, Pearson. ISBN: 978-02-016-1569-2
- Introduction to Embedded Systems' by Shibu KV, Mc Graw Hill Education. ISBN: 978-93- 392-1968-0
- 'Internet of Things: A Hands-On Approach' by ArshdeepBahga and Vijay

Madisetti, Universities Press. ISBN: 978-81-7371-954-7

• 'Internet of Things' by S.K. Vasudevan, A.S. Nagarajan and R.M.D. Sundaram, Wiley. ISBN: 978-81-265-7837-5

| Course                                                                              | Course Name                                                                                                                                                            | L-T-P           | Credits        | Pre-          |  |  |
|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------|---------------|--|--|
| Code                                                                                |                                                                                                                                                                        |                 |                | requisite     |  |  |
| CS115                                                                               | Operating systems 0-0-8 4 NIL                                                                                                                                          |                 |                |               |  |  |
| Course Ou                                                                           | tcomes (CO)**:                                                                                                                                                         |                 |                |               |  |  |
| CO1:                                                                                | <b>CO1:</b> Students will be able to identify different types of Operating System and their                                                                            |                 |                |               |  |  |
|                                                                                     | components                                                                                                                                                             |                 |                |               |  |  |
| CO2:                                                                                | Design and implementation of new system c                                                                                                                              | alls for any    | open source    | operating     |  |  |
|                                                                                     | system                                                                                                                                                                 |                 |                |               |  |  |
| CO3:                                                                                | Implementation of existing resource manage                                                                                                                             | ement algor     | ithms in Linu  | IX            |  |  |
|                                                                                     | operating system                                                                                                                                                       |                 |                |               |  |  |
| CO4:                                                                                | Students will be able to identify various syst                                                                                                                         | em security     | and protecti   | on issues     |  |  |
| CO5:                                                                                | Students will be able to completely administ                                                                                                                           | er the syste    | m using vari   | ous           |  |  |
|                                                                                     | Operating systems (Windows and Ubuntu) f                                                                                                                               | or managin      | g its resource | es            |  |  |
| *The mapp                                                                           | ing of CO/PO attainment/Graduate Attributes                                                                                                                            | are at Appe     | endix-A        |               |  |  |
| Introduction                                                                        | n: Concept of Operating Systems, Generation                                                                                                                            | ns of Operation | ating systems  | s, Types of   |  |  |
| Operating S                                                                         | Systems, OS Services, System Calls, Structur                                                                                                                           | e of an OS      | - Layered, I   | Monolithic,   |  |  |
| Microkerne                                                                          | l Operating Systems, Concept of Virtual M                                                                                                                              | lachine. Ca     | se study on    | UNIX and      |  |  |
| WINDOWS                                                                             | S Operating System. Processes: Definition, Pr                                                                                                                          | ocess Relat     | ionship, Diff  | ferent states |  |  |
| of a Proces                                                                         | ss, Process State transitions, Process Contro                                                                                                                          | l Block (P      | CB), Contex    | t switching   |  |  |
| Thread: De                                                                          | efinition, Various states, Benefits of thread                                                                                                                          | ls, Types       | of threads,    | Concept of    |  |  |
|                                                                                     | s, Process Scheduling: Foundation and                                                                                                                                  | U               |                | • 1           |  |  |
|                                                                                     | Scheduling criteria: CPU utilization, Throu                                                                                                                            | 01              |                | e e           |  |  |
| -                                                                                   | oonse Time; Scheduling algorithms: Pre-emp                                                                                                                             |                 |                |               |  |  |
|                                                                                     | Aultiprocessor scheduling: Real Time schedu                                                                                                                            | e               |                | *             |  |  |
|                                                                                     | ation: Critical Section, Race Conditions, Mut                                                                                                                          |                 |                | ,             |  |  |
| Strict Alternation, Peterson's Solution, The Producer Consumer Problem, Semaphores, |                                                                                                                                                                        |                 |                |               |  |  |
|                                                                                     | nters, Monitors, Message Passing, Classical                                                                                                                            |                 |                |               |  |  |
|                                                                                     | inning Philosopher Problem etc. Deadlocks: I                                                                                                                           |                 | •              |               |  |  |
|                                                                                     | conditions for Deadlock, Deadlock Prevention, Deadlock Avoidance: Banker's algorithm,                                                                                  |                 |                |               |  |  |
|                                                                                     | detection and Recovery. Memory Managen                                                                                                                                 |                 | -              | -             |  |  |
| •                                                                                   | Physical address map, Memory allocation: Contiguous Memory allocation – Fixed and                                                                                      |                 |                |               |  |  |
| -                                                                                   | rtition– Internal and External fragmentation a                                                                                                                         | -               |                |               |  |  |
| -                                                                                   | of operation – Page allocation – Hardware support for paging, Protection and sharing, Disadvantages of paging. Virtual Memory: Basics of Virtual Memory – Hardware and |                 |                |               |  |  |
|                                                                                     |                                                                                                                                                                        |                 | •              |               |  |  |
|                                                                                     | ctures – Locality of reference, Page fault, W                                                                                                                          | -               |                | -             |  |  |
| -                                                                                   | ging, Page Replacement algorithms: Optimal<br>C), Not recently used (NRU) and Least Recen                                                                              |                 |                |               |  |  |
| -                                                                                   | evice controllers, Direct memory access Print                                                                                                                          | •               |                |               |  |  |
|                                                                                     | andlers, Device drivers, Device independent                                                                                                                            | -               |                |               |  |  |
| interrupt ha                                                                        | andiers, Device unvers, Device independent                                                                                                                             |                 | are, second    | ary-storage   |  |  |

Structure: Disk structure, Disk scheduling algorithms File Management: Concept of File, Access methods, File types, File operation, Directory structure, File System structure, Allocation methods (contiguous, linked, indexed), Free-space management (bit vector, linked list, grouping), directory implementation (linear list, hash table), efficiency and performance. Disk Management: Disk structure, Disk scheduling - FCFS, SSTF, SCAN, C-SCAN, Disk reliability, Disk formatting, Boot-block, Bad blocks.

- Operating System Concepts Essentials, 9th Edition by AviSilberschatz, Peter Galvin, Greg Gagne, Wiley Asia Student Edition.
- Operating Systems: Internals and Design Principles, 5th Edition, William Stallings, Prentice Hall of India.

| Course Code                                                                                                                                                 | Course Name                                                                                                                                                       | L-T-P        | Credits      | Pre-         |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|--------------|--|
|                                                                                                                                                             |                                                                                                                                                                   |              |              | requisite    |  |
| EC123                                                                                                                                                       | Analog and Digital                                                                                                                                                | 3-1-0        | 3            | NIL          |  |
|                                                                                                                                                             | Communications                                                                                                                                                    |              |              |              |  |
| <b>Course Outcon</b>                                                                                                                                        | nes (CO)*:                                                                                                                                                        |              |              |              |  |
| CO1:                                                                                                                                                        | The students would understand van                                                                                                                                 | rious modu   | ulation con  | cepts and    |  |
|                                                                                                                                                             | distinguish between various modula                                                                                                                                | tion schem   | nes on the   | basis of     |  |
|                                                                                                                                                             | advantages, disadvantages and applicat                                                                                                                            | ions as used | l in analog  | and digital  |  |
|                                                                                                                                                             | wireless communication systems.                                                                                                                                   |              |              |              |  |
| CO2:                                                                                                                                                        | The students would be able to analyze                                                                                                                             |              | -            |              |  |
|                                                                                                                                                             | detection techniques of AM and FM s                                                                                                                               | ignals as us | sed in broad | lcast radio  |  |
|                                                                                                                                                             | and TV transmissions.                                                                                                                                             |              |              |              |  |
| CO3:                                                                                                                                                        | The students would be able to select a                                                                                                                            |              |              |              |  |
|                                                                                                                                                             | analog signal to digital signal with su                                                                                                                           | itable line  | coding tec   | hnique for   |  |
|                                                                                                                                                             | baseband transmission systems.                                                                                                                                    |              |              |              |  |
| <b>CO4:</b>                                                                                                                                                 | They would possess an ability to app                                                                                                                              | •            | -            | -            |  |
|                                                                                                                                                             | modulation schemes to improve perform                                                                                                                             | nance of ad  | vanced digi  | tal cellular |  |
| *751                                                                                                                                                        | communication systems.                                                                                                                                            | •1 .         | · • 1'       | •            |  |
| -                                                                                                                                                           | pping of CO/PO attainment/Graduate Attr                                                                                                                           |              | 11           |              |  |
|                                                                                                                                                             | pective; Electromagnetic Frequency Sp                                                                                                                             |              |              |              |  |
|                                                                                                                                                             | is System; Analog and Digital Transm                                                                                                                              |              |              |              |  |
| ••                                                                                                                                                          | t of Frequency Translation; Types of A                                                                                                                            | •            |              | -            |  |
| Amplitude Modulation; AM for a Complex Modulating Signal; AM Power and Current<br>Distribution: Limitation of AM: Comparison of AM DSDSC SSD and VSD:       |                                                                                                                                                                   |              |              |              |  |
| Distribution; Limitation of AM; Comparison of AM, DSBSC, SSB and VSB;<br>Applications of AM: Principles of Angle Modulation; Theory of FM – Pasic Concepts; |                                                                                                                                                                   |              |              |              |  |
| **                                                                                                                                                          | Applications of AM; Principles of Angle Modulation; Theory of FM – Basic Concepts; Spectrum Analysis of FM Wave; Narrowband and Wideband FM; Relationship between |              |              |              |  |
| FM and PM; Advantages and Disadvantages of Angle Modulation; Comparison of AM,                                                                              |                                                                                                                                                                   |              |              |              |  |
|                                                                                                                                                             | pplications of FM and PM; AM Radio Ti                                                                                                                             |              | -            |              |  |
|                                                                                                                                                             | o Receivers – AM Super heterodyne Re                                                                                                                              |              |              | e            |  |
|                                                                                                                                                             | s and Transmitters – Methods of FM                                                                                                                                |              |              |              |  |
|                                                                                                                                                             | - FM Super heterodyne Receiver, Ampl                                                                                                                              |              |              |              |  |



De-emphasis, FM Demodulators – Types; Digital versus Analog Transmissions, Sampling Theorem, Practical Aspects of Sampling, Classification of Pulse Modulation Techniques, Pulse Amplitude Modulation, Pulse Code Modulation – PCM System Block Diagram, PCM Encoding and Efficiency, Transmission Bandwidth of PCM, Quantization of Signals, Delta Modulation, Slope Overload and Granular Noise, Comparison of PCM and DM Techniques; Need and Properties of Line Codes, Line Encoding Techniques, Multiplexing in Telecommunication Networks – Fundamentals of TDM System, Synchronous and Asynchronous TDM, Comparison of TDM and FDM; Types of Digital Modulation, ASK, FSK and PSK; QPSK and Offset QPSK, Gaussian Minimum Shift Keying (GMSK).

- 'Analog and Digital Communications' by T. L. Singal, ISBN: 978-0-07-107269-4, McGraw Hill Education Publications, First Edition Copyright @ 2012, Fifth Reprint 2015.
- 'Electronic Communications' by T. L. Singal, ISBN: 978-93-82782-16-2, Chitkara University Publications, First edition Copyright @ 2014.
- 'Modern Digital and Analog Communication Systems' by B. P. Lathi and Zhi Ding, Oxford University Press, International 4th Edition Copyright @ 2010.
- 'Digital Communication' by T. L. Singal, ISBN: 978-93-392-1952-9, McGraw Hill Education Publications, First Edition Copyright @ 2015.

| Course Code              | Course Name L-T-P Credits Pre-                                                           |                |              |            |  |
|--------------------------|------------------------------------------------------------------------------------------|----------------|--------------|------------|--|
| EC124                    |                                                                                          | 0.0.2          | 1            | requisite  |  |
| EC124                    | Analog and Digital0-0-21NIL                                                              |                |              |            |  |
|                          | Communication Lab                                                                        |                |              |            |  |
| Course Outcomes (CC      | ))*:                                                                                     |                |              |            |  |
| C01:                     | The students would have a go                                                             | od understar   | nding of bot | h time and |  |
|                          | frequency domain representati                                                            | ons of infor   | mation and   | modulated  |  |
|                          | signals used in analog, pulse an                                                         | nd digital co  | mmunicatio   | n systems  |  |
| CO2:                     | They would be able to evolve                                                             | e functional   | blocks of '  | Tx and Rx  |  |
|                          | for AM/FM broadcast radio, baseband PCM transmission and                                 |                |              |            |  |
|                          | digital wireless communication                                                           | n application  | .s.          |            |  |
| CO3:                     | The students would be able to evaluate binary and M-ary shift                            |                |              |            |  |
|                          | keying digital modulation and demodulation techniques for                                |                |              |            |  |
|                          | digital cellular applications                                                            |                |              |            |  |
| *The mapping of          | CO/PO attainment/Graduate Att                                                            | tributes are a | t Appendix   | -A         |  |
| The lab work focuses     | on providing practical knowle                                                            | edge of fun    | damental c   | oncepts of |  |
| different types of analo | different types of analog, pulse and digital modulation and demodulation techniques used |                |              |            |  |
| in analog and digital of | communication systems. The st                                                            | udents are a   | also familia | rized with |  |
| MATLAB software to       | MATLAB software tool to simulate amplitude and frequency modulation process.             |                |              |            |  |
| Various experiments to   | be performed include the follow                                                          | wing: To ger   | nerate and d | lemodulate |  |
| the amplitude modulati   | on signal and plot the waveform                                                          | ns in time-d   | omain and    | frequency- |  |
| domain. To generate      | and demodulate the frequency                                                             | modulation     | signal and   | d plot the |  |



waveforms in time-domain and frequency-domain. To generate and plot natural sampling. Flat top sampling and sample & hold (PAM) waveforms. To study pulse code modulation (PCM) technique and observe analog signal to digital code conversion procedure. To study delta modulation (DM) techniques and observe the DM noise. To study and obtain modulated and demodulated waveforms of amplitude shift keying (ASK) technique. To study and obtain modulated and demodulated waveforms of frequency shift keying (FSK) technique. To study and obtain modulated and demodulated waveforms of phase shift keying (PSK) technique. To study and obtain Modulated and Demodulated waveforms of Quadrature Phase Shift Keying (QPSK) technique. To study GMSK modulation and demodulation process and observe the process. To execute various AT commands and observe their functions in GSM mobile handset. To study voice communication protocols and procedure using AT commands in GSM mobile handset. To simulate various analog and digital modulation schemes using MATLAB/LABVIEW simulation software.

- 'Analog and Digital Communications' by T. L. Singal, ISBN: 978-0-07-107269-4, McGraw Hill Education Publications, First Edition Copyright @ 2012, Fifth Reprint 2015.
- 'Electronic Communications' by T. L. Singal, ISBN: 978-93-82782-16-2, Chitkara University Publications, First edition Copyright @ 2014.
- 'Modern Digital and Analog Communication Systems' by B. P. Lathi and Zhi Ding, Oxford University Press, International 4th Edition Copyright @ 2010.
- `Digital Communication' by T. L. Singal, ISBN: 978-93-392-1952-9, McGraw Hill Education Publications, First Edition Copyright @ 2015.

| Course       | Course Name                                                            | L-T-P        | Credits    | Pre-           |
|--------------|------------------------------------------------------------------------|--------------|------------|----------------|
| Code         |                                                                        |              |            | requisite      |
| EC251        | Database Management System                                             | 0-0-8        | 4          | NIL            |
| Course Outo  | romes (CO)*:                                                           |              |            |                |
|              | Design and implement database system                                   | by implem    | enting SQ  | L commands     |
| CO1:         | for RDBMS and analyze database requi                                   | rements to   | determine  | e the entities |
|              | involved in the system and their relationsl                            | nip to one a | another    |                |
| CO2:         | Describe relational algebra expression and                             | nd tuple re  | lation exp | ression from   |
|              | queries                                                                |              |            |                |
| CO3:         | Implement the concept of normalization and functional dependency while |              |            |                |
|              | designing the databases                                                |              |            |                |
| CO4:         | Apply the concept of transaction, concurrency control, security and    |              |            |                |
|              | recovery in database                                                   |              |            |                |
| CO5:         | Implement procedures, functions, cursors and triggers and become       |              |            |                |
|              | proficient in PL/SQL programming                                       |              |            |                |
| *The mappin  | g of CO/PO attainment/Graduate Attributes                              | s are at App | pendix-A   |                |
| Introduction | to database and characteristics of data                                | base appr    | oach. Adv  | antages and    |
| Disadvantag  | es of DBMS approach. Introduction to Da                                | ta Models:   | ER Mode    | el, Relational |



Model. Schemas, Instances, Schema architecture and Data Independence Client Server Architecture for DBMS. ER Model: Data base design process, Entity Types, Entity sets, Attributes, keys and their types Weak entity types.ER diagrams, naming convention and design issues. E.F Codd Rules, Relational Model: Basic concept, Characteristics of relations Relational Algebra: Unary operation Relation, Relational Algebra Operations from Set Theory. Binary Relational Operations (Join, Division), Aggregate Functions and Grouping. Introduction to Normalization, their practical uses. Functional Dependencies (Fully, Transitive, Multi-valued, Join Dependencies)1st Normal Form 2nd Normal Form 3rd Normal Form Boyce Codd Normal Form(BCNF), 4th Normal Form, Introduction to 5th Normal. Introduction to Transaction and its desirable properties. System Log. Characterizing Schedules Based on Recoverability and Serializability. Introduction to Concurrency Control Techniques. Two Phase Locking Techniques for Concurrency Control. Concurrency Control based on Timestamp Ordering Dealing with Deadlocks. Introduction to Database Recovery Techniques Recovery techniques based on Deferred update and recovery techniques based on Immediate Update, Introduction to Checkpoints and Shadow Paging Introduction to Database Security, Discretionary access control based on granting and revoking privileges. Distributed Databases: Introduction to distributed databases, Advantages and Functions of distributed databases, Types of distributed databases System (Homogeneous and Heterogeneous), Parallel DBMS VS Distributed DBMS Data Fragmentation-Horizontal, Vertical & Hybrid, Data distribution transparencies, Replication and allocation techniques for Distributed database design.

- Data base Management Systems, Raghu Ramakrishnan, Johannes Gehrke, McGraw Hill Education (India) Private Limited, 3rd Edition. (Part of UNIT-I, UNIT-II, UNIT-III, UNIT-V)
- Data base System Concepts, A. Silberschatz, Henry. F. Korth, S. Sudarshan, McGraw Hill Education(India) Private Limited 1, 6th edition. (Part of UNIT-I, UNIT-IV)
- Database Systems, 6th edition, R Elmasri, ShamkantB.Navathe, Pearson Education.
- Database System Concepts, Peter Rob & Carlos Coronel, Cengage Learning.
- Introduction to Database Management, M. L. Gillenson and others, Wiley Student Edition.
- Database Development and Management, Lee Chao, Auerbach publications, Taylor & Francis Group. Introduction to Database Systems, C. J. Date, Pearson Education.

| Course                 | Course Name                            | L-T-P      | Credits    | Pre-         |
|------------------------|----------------------------------------|------------|------------|--------------|
| Code                   |                                        |            |            | requisite    |
| EC139                  | Introduction to CCNA Routing and       | 4-0-0      | 4          | NIL          |
|                        | Switching                              |            |            |              |
| Course Outcomes (CO)*: |                                        |            |            |              |
| CO1:                   | Understand different topologies and sr | nall netwo | orks by fo | ollowing the |



|             | down-top approach from physical layer to application layer.               |
|-------------|---------------------------------------------------------------------------|
| CO2:        | Formulate functioning of different protocols (e.g. IP, TCP, UDP, WWW,     |
|             | http, email, DNS ) of layered networking model.                           |
| CO3:        | Analyze basics concepts of routing, switching, and advanced technologies. |
| CO4:        | Students will be able to design simple networks using the application-    |
|             | driven paradigm.                                                          |
| *The mappin | g of CO/PO attainment/Graduate Attributes are at Appendix-A               |

Introduction: uses of Computer networks, Network hardware, Network Software Configuring network operating system: IOS boot camp, basic device configuration, address schemes, Seven- Layer OSI architecture of ISO, Concepts of Layer Protocols and Layer interfaces TCP/IP reference model, comparison of OSI and TCP/IP reference models, Physical Layer: Transmission Media, Wireless Transmission, Data Link Layer: data link layer protocols- Media access control ,Ethernet protocols, Ethernet MAC address, LAN switches- working, switch forwarding methods, Address resolution protocol (ARP). Network layer: network layer protocols i.e IPv4 and IPv6, routing(routing tables), routers, configuration of a routerIP addressing: IPv4 Network Addresses- structure and characteristics, IPv6 network addresses, connectivity verification, Subnetting IP networks: Subnetting an IPv4 Network, Addressing Schemes, Design Considerations for IPv6Transport Layer: transport layer protocols-TCP and UDP, communicationprocess of TCP and UDP, comparison of TCP and UDP Application Layer: Introduction, application layer protocols, well known application layer protocols and services- web and mail protocols( HTTP, HTTPS, email, SMTP, POP, IMAP), IP addressing services (DNS, DHCP), File sharing services(FTP, SMB) Building small Networks: Network Design: Protocols and devices used, Network Security, Basic Network Performance, Network Troubleshooting Routing Concepts: Routing Concepts, Initial Configuration of a Router, Routing Decisions, Router Operation Static and dynamic routing RIP, single area OSPF, Multiarea OSPF, EIGRP- Implementation and troubleshooting Access Control Lists: IP ACL Operation, Standard IPv4 ACLs, Extended IPv4 ACLSs, Contextual Unit: Debug with ACLs, Troubleshoot ACLs Contextual Unit: IPv6 ACLs NAT: Introduction, NAT working, Types of NAT- static, dynamic and PAT.

- 'CCNA Cisco Certified Network Associate Study Guide', by Todd Lammle, Wiley, 6th edition
- 'Computer Networks' by Andrew S. Tanenbaum, Pearson Education, Fourth Edition.
- CCNA Routing and Switching 200-125 official cert guide
- 'Computer Networking: A Top-Down Approach', by James Kurose and K.W. Ross, Pearson Education, 3rd Edition.

| Course<br>Code | Course Name                                 |     | L-T-P | Credits | Pre-requisite                 |
|----------------|---------------------------------------------|-----|-------|---------|-------------------------------|
| AM104          | Numerical Methods<br>Statistical Techniques | and | 3-1-0 | 3       | Engineering<br>Mathematics-I, |



| engineering    |
|----------------|
| Mathematics-II |

| Course (                                                                  | Course Outcomes (CO)**:                                                   |  |  |  |
|---------------------------------------------------------------------------|---------------------------------------------------------------------------|--|--|--|
| <b>CO1:</b> Understand various methods of modelling and solve mathematica |                                                                           |  |  |  |
|                                                                           | by various methods.                                                       |  |  |  |
| CO2:                                                                      | Understand statistical methods for data analysis and sampling techniques. |  |  |  |
| CO3:                                                                      | Students will be able to apply numerical integration and find best curve  |  |  |  |
|                                                                           | fitting for given data.                                                   |  |  |  |

Errors in Numerical Calculations: Errors and their analysis, general error formula, errors in a series approximation, Solution of algebraic and Transcendental equations: Bisection method, Method of false position, Newton -Raphson method, order of convergence, Interpolation method: finite difference, forward, backward and central difference, Difference of a polynomial, Newton's formulae for interpolation, central difference interpolation formulae, Interpolation with unevenly spaced points, Newton's divided difference method, Numerical Differentiation and Integration: Numerical differentiation, maximum and minimum values of a tabulated function; Numerical Integrationtrapezoidal rule, Simpson1/3 rule, Simpson's 3/8 rule, Newton-cots integration formulae; Euler-Meclaurin formula, Gaussian integration(One dimensional only), Linear systems of equations: Gaussian Elimination method, gauss seidel iteration method, rayleigh's power method for Eigen values and eigen vectors, Numerical solution of ordinary differential equations: Solution by Taylor's series, Prediction -correction method, Boundary value problems, Prediction corrector method, Euler's and modified Euler's method, Runge-Kutta method, finite difference methods, Numerical solution of Partial differential equations: Finite difference approximation to derivatives, Solution to Laplace's equationmethod, Gauss -Seidel method, Probability and Statistical methods : Jacobi's Introduction to probability, Baye's theorem ,curve fitting, random variable(discrete and continuous), binomial, poisson, normal, exponential distribution, sampling distribution of means and variance, t-distribution and F-distribution, correlation, lines of regression(two variables only).

### **Suggested Book(s):**

- 'Numerical Methods' by, E. balagurusamy, TMH
- 'Advance Numerical Analysis with programming in C++' by Chitkara University Publication.

| S. No. | Course<br>Code | Name of the Course             | Credits |
|--------|----------------|--------------------------------|---------|
| 1      | EC116          | Linear Integrated Circuits     | Δ       |
| 2      | EC117          | Linear Integrated Circuits lab | •       |
| 3      | EC125          | Digital VLSI Design            | 4       |
| 4      | EC126          | Digital VLSI Design LAB        | 4       |

### **<u>12.4 Programme Elective Courses</u>**



| 5  | EC201 | Analog Layout Design                      | 4   |
|----|-------|-------------------------------------------|-----|
| 6  | EC203 | Bio-medical electronics                   | 4   |
| 7  | EC204 | Digital Image Processing                  |     |
| 8  | EC205 | Digital Image Processing Lab              | - 4 |
| 9  | EC206 | Digital System Design                     |     |
| 10 | EC207 | Digital System Design Lab                 | - 4 |
| 11 | EC208 | Electronic System design                  | 4   |
| 12 | EC211 | High Speed VLSI Design Circuits           | 4   |
| 13 | EC212 | High Speed VLSI Design Circuits Lab       | - 4 |
| 14 | EC213 | Information Theory and Coding             | 4   |
| 15 | EC214 | Introduction to MEMs                      | 4   |
| 16 | EC215 | Introduction to mobile technology         | 4   |
| 17 | EC217 | IOT and Industrial Application            | 4   |
| 18 | EC220 | Low Power VLSI System Design              |     |
| 19 | EC221 | Low Power VLSI System Design lab          | - 4 |
| 20 | EC222 | Microwave and Satellite communication     |     |
| 21 | EC223 | Microwave and Satellite communication lab | - 4 |
| 22 | EC224 | Mixed Signal Circuit Design               | 4   |
| 23 | EC226 | Optical communication systems             | 4   |
| 24 | EC230 | Python for Data Science                   | 4   |
| 25 | EC233 | Speech and audio Processing               | 4   |
| 26 | EC234 | VLSI Design and Verification              | 4   |
| 27 | EC235 | VLSI Design and Verification lab          | - 4 |
| 28 | EC236 | Wearable technology and reality           | 4   |
| 29 | EC237 | Sensor and Communication Protocol         | 4   |
| 30 | EC239 | Advance Wireless Communication            | 4   |
| 31 | EC241 | Cloud Computing for IoT                   | 4   |
| 32 | EC242 | Nano Electronics                          | 4   |
| 33 | EC243 | Wireless Sensor Networks                  | 4   |
| 34 | EC244 | IC fabrication and Technology             | 4   |
| 35 | EC262 | Machine learning                          | 4   |
| 36 | EC248 | Data extraction & Visualization           | 4   |
| 37 | EC249 | IoT application development               | 4   |
| 38 | EC250 | Web Development for Iot                   | 4   |
| 39 | EC258 | Core JAVA                                 | 4   |
| 40 | EC259 | Data analytics                            | 4   |
| 41 | EC260 | Business Statistics                       | 4   |
| 42 | EC261 | Introduction to Web technologies          | 4   |
| 43 | EC263 | Advanced Machine learning                 | 4   |
| 44 | EC264 | Big Data Analytics with Ecosystem         | 4   |
| 45 | EC266 | Cloud computing & Virtualization          | 4   |
| 46 | EC267 | Advanced Web technologies (server side)   | 4   |

Chitkara University School of Engineering and Technology (ECE Department)

| 47 | EC268 | Android Application development         | 4 |
|----|-------|-----------------------------------------|---|
| 48 | EC269 | Artificial Intelligence & expert system | 4 |

| Course Code          | Course Name                                                                                                                                       | L-T-P           | Credits      | Pre-<br>requisite     |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|-----------------------|
| EC116                | Linear Integrated Circuits                                                                                                                        | 3-1-0           | 3            | Analog<br>Electronics |
| <b>Course Outcon</b> | nes (CO)*:                                                                                                                                        |                 |              | ·                     |
| CO1:                 | To be able to design Op-amp based circuit to give specified gain.                                                                                 |                 |              |                       |
| CO2:                 | To compute component values to design different Op-amp based<br>applications such as arithmetic building blocks, filters, waveform<br>generators. |                 |              |                       |
| CO3:                 | To develop practical skills for building and testing circuits using analog ICs.                                                                   |                 |              |                       |
| *The map             | pping of CO/PO attainment/Gradua                                                                                                                  | te Attributes a | are at Appen | ndix-A                |

Unit-1: Fundamentals of Op-Amp: Operational Amplifier, Block Diagram. Schematic symbol, Integrated Circuits, types of Integrated Circuits. Ideal Op Amp, equivalent circuit, Ideal voltage transfer curve, open loop Op Amp configurations: differential, inverting and non- inverting. Unit-2: Op-Amp ideal circuits: Block Diagram representation of feedback configurations, Voltage Series Feedback Amplifier: closed loop voltage gain, difference input voltage ideally zero, input and output resistance Bandwidth, total output offset voltage, voltage follower. Voltage Shunt Feedback Amplifier: closed loop voltage gain, inverting input terminal at virtual ground, Input and output resistance Bandwidth, total output offset voltage. Current to voltage converter. Linear applications : DC and AC Amplifiers, Summing, Scaling and averaging amplifier, instrumentation Amplifier, Integrator Circuit, Differentiator Circuit, Introduction to Voltage to current converter with floating load and grounded load. Unit-3: Non-idealities and frequency response: Practical Op Amp: Input offset voltage, input bias current, Input offset current, common mode rejection ratio, Frequency response: compensating networks, frequency response of internally compensated and non-compensated op amps, high frequency op amp equivalent circuit, open loop voltage gain as a function of frequency, close loop frequency response, circuit stability, slew rate: Causes of slew rate, slew rate equation. Unit-4: Active filters and Oscillators: Filters: Active filters: First order LP Butterworth filter, Second order LP Butterworth filter, First order HP Butterworth filter, Second order HP Butterworth filter. Phase Shift Oscillator and Wien Bridge Oscillator. Unit-5: Nonlinear circuits: Basic Comparator, Schmitt Trigger, Square wave, Saw tooth Wave and triangular wave generator, 555 Timer as an Astable and Mono stable multivibrator. VCO and Phase Locked Loops: Operating Principles only.

- "Op-AMPS and Linear Integrated Circuits", by Ramakant A. Gayakwad, Prentice-Hall, 4th edition, 2008.
- "Linear Integrated Circuits", by T.L Singal, PBS Education, 1<sup>st</sup> edition, 2015.
- "Linear Integrated Circuits", by S. Salivahanan, V S KanchannaBhaaskaran, Tata





McGraw-Hill, 1<sup>st</sup> Edition, 2008.

• "Linear Integrated Circuyits", by D. Roy Choudhary, Sahil B. Jain, New Age Techno press, 4<sup>th</sup> edition, 2010.

| Course Code           | Course Name                                                 | L-T-P                                                        | Credits | Pre-<br>requisite |
|-----------------------|-------------------------------------------------------------|--------------------------------------------------------------|---------|-------------------|
| EC117                 | Linear Integrated                                           | 0-0-2                                                        | 1       | Analog            |
|                       | Circuits Lab                                                |                                                              |         | electronic        |
|                       |                                                             |                                                              |         | s lab             |
| Course Outcomes (CO)* | :                                                           |                                                              |         |                   |
| C01:                  | To be able to select an a                                   | To be able to select an appropriate IC for an industrial and |         |                   |
|                       | domestic applications by interpreting electronic datasheet. |                                                              |         |                   |
| CO2:                  | To be able to design                                        | To be able to design an op amp based circuit such as         |         |                   |
|                       | filters, oscillators, generators, converters and can solve  |                                                              |         |                   |
|                       | problems related to it.                                     |                                                              |         |                   |
| CO3:                  | To be able to troublesh                                     | To be able to troubleshoot and replace the defective parts   |         |                   |
|                       | of op amp based electron                                    | of op amp based electronic circuits.                         |         |                   |
| CO4:                  | To develop appropriate                                      | To develop appropriate communication skills, particularly    |         |                   |
|                       | technical reports through the laboratory.                   |                                                              |         |                   |

\*The mapping of CO/PO attainment/Graduate Attributes are at Appendix-A

To investigate the application of negative feedback Operational Amplifier as Inverting and Non-Inverting configuration. Also verify them using Multisim. To observe the performance parameters of an Operational Amplifier. To observe & study frequency response of an Operational Amplifier. Measurement of Saturation limits of an Operational Amplifier. To design a Differentiator circuit and observe output with different input waveforms using Op-Amp. To design an Integrator circuit and observe output with different input waveforms using Op-Amp. To investigate an application of an OP-Amp as Schmitt trigger. To Calculate the time period and observe the waveform generated of 555 timer using Op-Amp. To observe an application of an Op Amp as summing, scaling and averaging circuit. To understand the concept of differentiator as a building block for designing High pass Butterworth active filters using Op Amp. To understand the concept of an integrator as a building block for designing Low pass Butterworth active filters using Op Amp. To investigate an Op-amp based circuits which can generate Square and Triangular waveforms. To Observe Phase Locked Loop (PLL) Characteristics and its use as a frequency Multiplier.

- "Op-AMPS and Linear Integrated Circuits", by Ramakant A. Gayakwad, Prentice-Hall, 4th edition, 2008.
- "Linear Integrated Circuits", by T.L Singal, PBS Education, 1<sup>st</sup> edition, 2015.
- "Linear Integrated Circuits", by S. Salivahanan, V S KanchannaBhaaskaran, Tata McGraw-Hill, 1<sup>st</sup> Edition, 2008.
- "Linear Integrated Circuyits", by D. Roy Choudhary, Sahil B. Jain, New Age Techno press, 4<sup>th</sup> edition, 2010.

| Course Code       | Course Name                    | L-T-P                                                           | Credits      | Pre-requisite      |  |
|-------------------|--------------------------------|-----------------------------------------------------------------|--------------|--------------------|--|
| EC125             | Digital VLSI Design            | 3-1-0                                                           | 3            | Digital            |  |
|                   |                                |                                                                 |              | Electronics        |  |
|                   |                                |                                                                 |              | and Logic          |  |
|                   |                                |                                                                 |              | Design             |  |
| Course Outcomes ( | Course Outcomes (CO)*:         |                                                                 |              |                    |  |
| CO1:              | Students will get a clear u    | Students will get a clear understanding of VLSI design flow and |              |                    |  |
|                   | different types of design styl | es which an                                                     | re used for  | integrated circuit |  |
|                   | design                         |                                                                 |              |                    |  |
| CO2:              | Students will be able to des   | sign buildin                                                    | g blocks of  | digital IC using   |  |
|                   | different types of modelling s | tyles used in                                                   | n Verilog an | nd perform timing  |  |
|                   | analysis of the blocks         |                                                                 |              |                    |  |
| CO3:              | Students will acquire skills   | to identify t                                                   | he faults as | sociated in VLSI   |  |
|                   | circuits and various technique | es to test the                                                  | ICs.         |                    |  |
| *The mapping      | of CO/PO attainment/Graduate   | e Attributes                                                    | are at Appe  | ndix-A             |  |

Historical Perspectives, Flow of circuit design procedure, VLSI Design Flow, VLSI Design Styles, Design Quality, Introduction to Verilog, verilog data types, system tasks, compiler directives, Modules definition and Ports declaration, Gate-Level Modeling, Rise, fall, turn-off delays, Min, Max, and typical delays. Dataflow Modeling, Introduction to Behavioural Modelling, Structured Procedures, Timing controls, Conditional Statements, Procedural Assignments, Multiway Branching, Loops, Sequential and Parallel Blocks, Moore and Mealy Machine, Design of FSM in Verilog, Setup/Hold concept, Static timing analysis, Optimizing for Area/Timing, Introduction: Fault Types and Models, Ad Hoc Testable Design Techniques, Scan-Based Techniques, Built-In Self-Test (BIST) Techniques.

- `Verilog HDL Guide' by Samir Palnitkar, Pearson, 2<sup>nd</sup> Edition, 2001, ISBN 978-81-7758-918-4.
- CMOS Digital Integrated Circuits Analysis and Design' by Sung-Mo Kang and Yusuf Leblebici, Tata McGraw Hill Publication, 3<sup>rd</sup> Edition, 2005, ISBN 0-07-246053-9.
- `Essentials of Electronics Testing for digital memory & mixed signal VLSI Circuits' by Bushnell and Aggarwal, Kluwer Academic Publishers, 1<sup>st</sup> Edition, ISBN 0-306-47040-3.
- 'Verilog HDL synthesis: A Practical Primer' by J. Bhaskar, Star Galaxy Publishing, 2<sup>nd</sup> edition 1998, ISBN 0-9650391-5-3.

| Course Code            | Course Name                | L-T-P | Credits | Pre-requisite                                   |
|------------------------|----------------------------|-------|---------|-------------------------------------------------|
| EC126                  | Digital VLSI<br>Design lab | 0-0-2 | 1       | Digital<br>Electronics &<br>Logic Design<br>Lab |
| Course Outcomes (CO)*: |                            |       |         |                                                 |



| CO1: | Students will be able to use digital design tools such as           |  |  |
|------|---------------------------------------------------------------------|--|--|
|      | Xilinx/Vivado for implementing digital circuits                     |  |  |
| CO2: | Conduct experiments to evaluate the performance of digital circuits |  |  |
|      | with respect to time.                                               |  |  |
| CO3: | Design and simulate the sequential circuits such as registers,      |  |  |
|      | counters and state machines using ISE design tool.                  |  |  |

\*The mapping of CO/PO attainment/Graduate Attributes are at Appendix-A Introduction to VLSI ASIC and VLSI FPGA Design Flow, Introduction to Xilinx ISE/Vivado digital design tool, Verify the truth tables of all the logic gates using Xilinx/Vivado/Cadence digital design tool, An engineer wants to send multiple data signals combined into one over a shared medium. Design and a circuit which shall aid the engineer to do so, Implement the same using Xilinx/Vivado/Cadence digital design tool, For secure transmission of 4-bit of information it is desired that the information is encoded at the transmitter end and then sent over a medium to the receiver side where it is decoded again, Implement such a system using Xilinx/Vivado/Cadence digital design tool, Design a circuit that adds (a)two 1-bit inputs (b)three 1-bit inputs, Design a circuit that subtracts (a)two 1-bit inputs (b)three 1-bit inputs, A code represents each number in the sequence of integers {0...2^N-1} as a binary string of length N in an order such that adjacent integers have code representations that differ in only one bit position, Design such a logic using Xilinx/Vivado/Cadence digital design tool for N = 4, John transmitted 8-bit data i.e. 10101011 over a transmission line, but at the receiver end one bit got changed from 1 to 0, Discuss the method by which John will be able to detect the error. Implement it using Xilinx/Vivado/Cadence digital design tool. A design engineer wants to subtract a number from another number, but during subtraction he found that ALU cannot perform subtraction directly, Implement the logic which will be able to do so using Xilinx/Vivado/ Cadence digital design tool, Design different Flip Flops using sequential constructs using Xilinx/Vivado/Cadence digital design tool, A designer needs to shift 4 bit of data from input to output. Show the transfer of data using SISO and SIPO logic using Xilinx/Vivado/Cadence digital design tool, A record of total number of cars entering and leaving a parking lot which is having a capacity of maximum 15 cars is to be maintained on regular basis, Design a counter which keeps a count of the same using Xilinx/Vivado/Cadence digital design tool.

- Verilog HDL Guide' by Samir Palnitkar, Pearson, 2<sup>nd</sup> Edition, 2001, ISBN 978-81-7758-918-4.
- CMOS Digital Integrated Circuits Analysis and Design' by Sung-Mo Kang and Yusuf Leblebici, Tata McGraw Hill Publication, 3<sup>rd</sup> Edition, 2005, ISBN 0-07-246053-9.
- `Essentials of Electronics Testing for digital memory & mixed signal VLSI Circuits' by Bushnell and Aggarwal, Kluwer Academic Publishers, 1<sup>st</sup> Edition, ISBN 0-306-47040-3.
- 'Verilog HDL synthesis: A Practical Primer' by J. Bhaskar, Star Galaxy Publishing, 2<sup>nd</sup> edition 1998, ISBN 0-9650391-5-3.



| Course                                                                                 | Course Name                                                                              | L-T-P          | Credits       | Pre-requisite        |  |
|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------|---------------|----------------------|--|
| Code                                                                                   |                                                                                          |                |               |                      |  |
| EC201                                                                                  | Analog layout Design                                                                     | 0-0-8          | 4             | Analog               |  |
|                                                                                        |                                                                                          |                |               | Electronics,         |  |
|                                                                                        |                                                                                          |                |               | Microelectronics     |  |
| Course Ou                                                                              | itcomes (CO)**:                                                                          |                |               |                      |  |
| CO1:                                                                                   | Enhance the skills of integrated circ                                                    | cuit design    | for designin  | g layouts of         |  |
|                                                                                        | complex circuits.                                                                        |                |               |                      |  |
| CO2:                                                                                   | Students will be able to design layo                                                     | outs using C   | MOS technol   | ology and learn      |  |
|                                                                                        | industry related design tools such a                                                     | s Cadence V    | Virtuoso to v | work as IC design    |  |
|                                                                                        | engineer.                                                                                |                |               |                      |  |
| CO3:                                                                                   | Able to apply different matching te                                                      | chniques in    | layouts of a  | nalog circuits and   |  |
|                                                                                        | apply those techniques to design hi                                                      | gh quality a   | nd noise tol  | erant layout         |  |
| *The mapp                                                                              | oing of CO/PO attainment/Graduate A                                                      | Attributes and | re at Append  | lix-A                |  |
| Introductio                                                                            | on to CMOS physical design, Intro                                                        | duction to     | CMOS tech     | hnology, Important   |  |
| Processes i                                                                            | involved in IC fabrication, Fabrication                                                  | on steps of    | CMOS inve     | rter, Demo of GDS    |  |
| 3D viewer                                                                              | , Introduction to the layout tool, Dra                                                   | awing-relate   | ed features a | and functionality of |  |
|                                                                                        | ive demo of layout of basic comm                                                         | •              | 0             |                      |  |
|                                                                                        | yout XL, DRC categories, DRC flow                                                        | U              |               | •                    |  |
| -                                                                                      | rams, Digital standard cell layouts,                                                     |                |               |                      |  |
|                                                                                        | with layout design, Layout optimiza                                                      |                | -             |                      |  |
|                                                                                        | NAND/NOR gate layout, Live dem                                                           |                | -             |                      |  |
| -                                                                                      | gates with LVS and DRC clean, Intro                                                      |                | -             |                      |  |
|                                                                                        | to various types of resistors & its parameters, BJTs and its parameters, Introduction to |                |               |                      |  |
| • 1                                                                                    | bes of capacitors & its parameters, M                                                    | -              |               |                      |  |
| •                                                                                      | layout concepts, Need & Techniques for Matching: Common centroid, interdigitization      |                |               |                      |  |
| (Differential pairs and current mirror circuits),WPE and STI effect, Comparator layout |                                                                                          |                |               |                      |  |
| -                                                                                      | ching technique, OTA layout using                                                        | -              | -             | •••                  |  |
|                                                                                        | ues, Coupling & Shielding, Routin                                                        | -              | -             |                      |  |
| -                                                                                      | s, ESD & Latch-up, Electro-migration                                                     | n effects and  | d metal widt  | th calculations,     |  |
| Suggested                                                                              |                                                                                          |                |               |                      |  |
| • The                                                                                  | e Art of Analog layout' by Alan Hast                                                     | tıngs, 2001,   | ISBN 0-13-    | -087061-7, Prentice  |  |

- The Art of Analog layout' by Alan Hastings, 2001, ISBN 0-13-087061-7, Prentice Hall
- CMOS circuit design, layout & simulation' by R. Jacob Baker,3<sup>rd</sup> Edition, Wiley
- Analog Integrated Circuit Design' by Tony Chan Carusone, David A. Johns, Kenneth W. Martin,2<sup>nd</sup> Edition, ISBN 978-0-470-77010-8, Wiley

| Course<br>Code | Course Name                                                                 | L-T-P | Credits | Pre-<br>requisite |  |
|----------------|-----------------------------------------------------------------------------|-------|---------|-------------------|--|
| EC203          | <b>Biomedical Electronics</b>                                               | 0-0-8 | 4       | NIL               |  |
| Course Ou      | Course Outcomes (CO)**:                                                     |       |         |                   |  |
| CO1:           | Understand the fundamental principles of Biomedical circuit .               |       |         |                   |  |
| CO2:           | To analyze bio electronic circuits using oscilloscopes and other electronic |       |         |                   |  |



|                                                                                              | test equipment.                                                            |  |  |
|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--|--|
| CO3:                                                                                         | Apply knowledge of biomedical electronic circuits to solve problems in the |  |  |
|                                                                                              | areas of biomedical signals.                                               |  |  |
| *The mapping of CO/PO attainment/Graduate Attributes are at Appendix-A                       |                                                                            |  |  |
| Brief introduction to human physiology. Biomedical transducers: displacement, velocity,      |                                                                            |  |  |
| force, acceleration, flow, temperature, potential, dissolved ions and gases. Bio-electrodes  |                                                                            |  |  |
| and biopotential amplifiers for ECG, EMG, EEG, etc. Measurement of blood temperature,        |                                                                            |  |  |
| pressure and flow. Impedance plethysmography. Ultrasonic, X-ray and nuclear imaging.         |                                                                            |  |  |
| Prostheses and aids: pacemakers, defibrillators, heart-lung machine, artificial kidney, aids |                                                                            |  |  |
| for the handicapped. Safety aspects.                                                         |                                                                            |  |  |
| Suggeste                                                                                     | Suggested Books:                                                           |  |  |

- W.F. Ganong, Review of Medical Physiology, 8th Asian Ed, Medical Publishers, 1977.
- J.G. Websster, ed., Medical Instrumentation, Houghton Mifflin, 1978.
- A.M. Cook and J.G. Webster, eds., Therapeutic Medical Devices, Prentice-Hall, 1982.

| Course       | Course Name                                                                               | L-T-P        | Credits        | Pre-          |  |
|--------------|-------------------------------------------------------------------------------------------|--------------|----------------|---------------|--|
| Code         |                                                                                           |              |                | requisite     |  |
| EC204        | Digital Image Processing                                                                  | 3-1-0        | 3              | Digital       |  |
|              |                                                                                           |              |                | Signal        |  |
|              |                                                                                           |              |                | Processing    |  |
|              |                                                                                           |              |                |               |  |
| Course Ou    | tcomes (CO)**:                                                                            |              |                |               |  |
| CO1:         | After the completion of the course student                                                | will be ab   | le to underst  | and the       |  |
|              | fundamental concepts of a digital image p                                                 | rocessing s  | ystem like I   | mage          |  |
|              | formation, Image sampling and quantizati                                                  | on           |                |               |  |
| CO2:         | Students will develop the knowledge to an                                                 | nalyze the d | lifferent ima  | ges in the    |  |
|              | frequency domain using various transform                                                  | ıs           |                |               |  |
| CO3:         | Students will be able to realize the import                                               | ance of filt | ers for the in | nages and     |  |
|              | also they will be able to differentiate betw                                              | een the dif  | ferent types   | of filters.   |  |
| *The mapp    | ing of CO/PO attainment/Graduate Attribut                                                 | es are at A  | ppendix-A      |               |  |
| Introduction | n: What is Digital Image Processing? Fu                                                   | ındamental   | steps in D     | igital Image  |  |
| Processing,  | Application fields and Components of an                                                   | n image pr   | ocessing sys   | stem. Digital |  |
| Image Fun    | damentals: Elements of Visual Perceptio                                                   | n, Monoch    | nrome and      | Color vision  |  |
|              | mple image formation model, Image S                                                       |              | -              |               |  |
|              | between pixels, Linear and Non-Linear                                                     |              |                |               |  |
| -            | domain, Basic gray level transformations                                                  | -            | -              |               |  |
| -            | Equalization and Histogram specification. Enhancement using Image subtraction and         |              |                |               |  |
|              | averaging. Basics of spatial filtering, Smoothing and sharpening filters. Basic geometric |              |                |               |  |
|              | ions: Introduction to Fourier Transform a                                                 |              | -              |               |  |
|              | FFT. Image Enhancement in the frequent                                                    | •            |                |               |  |
| domain filt  | ters. Image Enhancement in the frequent                                                   | cy domain    | : Sharpenin    | g frequency   |  |

domain filters. Image Restoration: A Model of Image Degradation / restoration process. Noise models, Restoration in the presence of noise only: Spatial Filtering. Periodic noise reduction by Frequency domain filtering. Algebraic approach to restoration: Inverse filtering, Minimum Mean Square Error (Wiener) Filtering. Morphological Image Processing: Preliminaries: Some basic concepts from set theory, Logic Operations Involving Binary Images. Dilation and Erosion, Opening and Closing. The Hit-or-Miss Transformation. Some Basic Morphological Algorithms: Boundary Extraction, Region Filling, Extraction of Connected Components, Convex Hull, Thinning, Thickening, Skeletons, Pruning. Color Image Processing: Fundamentals, Color Models, Pseudocolor Image Processing. Basics of full color image processing, Image Segmentation: Detection of Discontinuities, Point, Line and Edge detection. Edge linking and Boundary Detection, Thresholding, Image compression.

### Suggested Books:

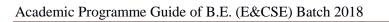
- Rafael C. Gonzalez & Richard E. Woods, Digital Image Processing, Pearson Education (2nd edition)
- Anil K. Jain, Fundamentals of Digital Image Processing, Prentice Hall, Pearson Education (ISBN 81-297-0083-2)

| Course                               | Course Name                                                                           | L-T-P       | Credits      | Pre-requisite  |  |  |
|--------------------------------------|---------------------------------------------------------------------------------------|-------------|--------------|----------------|--|--|
| Code                                 |                                                                                       |             |              |                |  |  |
| EC205                                | Digital Image Processing Lab                                                          | 0-0-2       | 1            | Digital Signal |  |  |
|                                      |                                                                                       |             |              | Processing     |  |  |
|                                      | tcomes (CO)**:                                                                        |             |              |                |  |  |
| Course Ou                            | · · ·                                                                                 |             |              |                |  |  |
| <b>CO1:</b>                          | After completion of this lab, the stude                                               | ents are in | a portion to | understand the |  |  |
|                                      | concepts of structure of human eye ar                                                 | nd Image f  | ormation in  | the eye.       |  |  |
| CO2:                                 | <b>CO2:</b> The Students will be able to apply the different techniques for the       |             |              |                |  |  |
| enhancement and filtering of images. |                                                                                       |             |              |                |  |  |
| CO3:                                 | <b>CO3:</b> Students will be able to understand the relevant aspects of digital image |             |              |                |  |  |
|                                      | representation and their practical Implications.                                      |             |              |                |  |  |
| *The mapp                            | ing of CO/PO attainment/Graduate Att                                                  | ributes are | at Appendix  | x-A            |  |  |

To study the concept of Image processing including the image acquisition, image storage, image processing and display. To obtain contrast adjustment using histogram equalization of the image. To Implement smoothing or averaging filter in spatial domain using the general processes of convolution and correlation. Program for opening and closing of the image for studying the morphological image removal. To fill the region of interest for the image in order to identify and process a given purpose. Program for edge detection algorithm including the multistage algorithm to detect a wide range of edges in the given images. Program of sharpen image using gradient mask to bring about a directional change in the intensity or color in an image. Program for morphological operation: erosion and dilation 9. Program for DCT/IDCT computation

### Suggested Books:

• Rafael C. Gonzalez & Richard E. Woods, Digital Image Processing, Pearson




Education (2nd edition).

• Anil K. Jain, Fundamentals of Digital Image Processing, Prentice Hall, Pearson Education (ISBN 81-297-0083-2).

| Course                  | Course Name                                                                      | L-T-P        | Credits         | Pre-          |  |  |
|-------------------------|----------------------------------------------------------------------------------|--------------|-----------------|---------------|--|--|
| Code                    |                                                                                  |              |                 | requisite     |  |  |
| EC206                   | Digital System Design                                                            | 3-1-0        | 3               | Digital       |  |  |
|                         |                                                                                  |              |                 | Electronics   |  |  |
|                         |                                                                                  |              |                 | & Logic       |  |  |
|                         |                                                                                  |              |                 | Design        |  |  |
| Course Outcomes (CO)**: |                                                                                  |              |                 |               |  |  |
| CO1:                    | The students completing this course are e                                        | expected to  | understand t    | he structure  |  |  |
|                         | of various number systems and its application                                    | ation in dig | ital design.    |               |  |  |
| CO2:                    | Students will be able to design the approp                                       | priate truth | table from a    | description   |  |  |
|                         | of a combinational logic function                                                |              |                 |               |  |  |
| CO3:                    | Students will be able to analyze and desig                                       | gn various o | combinationa    | al and        |  |  |
|                         | sequential circuits like Comparators, Mul                                        | tiplexers, E | Encoders etc.   |               |  |  |
| CO4:                    | Students will be able to design the synchr                                       | ronous circ  | uits like Puls  | e train       |  |  |
|                         | generator, Pseudo Random Binary Seque                                            | nce generat  | tor             |               |  |  |
| *The mappi              | ing of CO/PO attainment/Graduate Attribu                                         | tes are at A | ppendix-A       |               |  |  |
| Logic Simp              | lification and Combinational Logic Desig                                         | gn: Review   | of Boolean      | Algebra and   |  |  |
| De Morgan               | 's Theorem, SOP & POS forms, Canoni                                              | cal forms,   | Karnaugh n      | naps up to 6  |  |  |
| variables, E            | Binary codes, Code Conversion. MSI devi                                          | ces like Co  | omparators, 1   | Multiplexers, |  |  |
| Encoder, D              | Decoder, Driver & Multiplexed Display,                                           | half andF    | Full Adders,    | Subtractors,  |  |  |
| Serial and F            | Parallel Adders, BCD Adder, Barrel shifter                                       | and ALU      | Sequential L    | ogic Design:  |  |  |
| Building bl             | ocks like S-R, JK and Master-Slave JK                                            | FF, Edge     | triggered F     | F, Rippleand  |  |  |
| •                       | is counters, Shift registers, Finite state mad                                   |              | •               |               |  |  |
| -                       | c State Machines charts. Designing syr                                           |              |                 |               |  |  |
| -                       | Pseudo Random Binary Sequence generate                                           | -            |                 | -             |  |  |
|                         | conductor Memories: TTL NAND ga                                                  | _            |                 | _             |  |  |
| 10                      | n delay, fan-in, fan-out, Tristate TTL,                                          |              |                 |               |  |  |
| -                       | Memory elements, Concept of Programm                                             | -            |                 | -             |  |  |
| -                       | implementation using Programmable Devices. VLSI Design flow: Design entry:       |              |                 |               |  |  |
|                         | Schematic, FSM & HDL, different modeling styles in VHDL, Data types and objects, |              |                 |               |  |  |
|                         | Behavioral and Structural Modeling,                                              | •            | and Simula      | ation VHDL    |  |  |
|                         | nd codes for combinational and sequential                                        | circuits.    |                 |               |  |  |
| Suggested 1             |                                                                                  |              |                 |               |  |  |
| • R.P.                  | Jain, "Modern digital Electronics", Tata M                                       | AcGraw Hi    | ll, 4th edition | n, 2009.      |  |  |

- Douglas Perry, "VHDL", Tata McGraw Hill, 4th edition, 2002.
- W.H. Gothmann, "Digital Electronics- An introduction to theory and practice", PHI, 2<sup>nd</sup> edition ,2006.
- D.V. Hall, "Digital Circuits and Systems", Tata McGraw Hill, 1989
- Charles Roth, "Digital System Design using VHDL", Tata McGraw Hill 2nd



**Course Name** 

L-T-P

Credits

Prerequisite



edition, 2012.

Course

Code

| EC207                                                                                                                                                                                                            | Digital System Design Lab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0-0-2                                                                                                                                                                                                   | 1                                                                                                                                                                        | Digital                                                                                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                         |                                                                                                                                                                          | Electronic                                                                                                                                                       |
|                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                         |                                                                                                                                                                          | & Logic                                                                                                                                                          |
|                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                         |                                                                                                                                                                          | Design                                                                                                                                                           |
|                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                         |                                                                                                                                                                          | Lab                                                                                                                                                              |
| Course Ou                                                                                                                                                                                                        | tcomes (CO)**:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11                                                                                                                                                                                                      |                                                                                                                                                                          |                                                                                                                                                                  |
| CO1:                                                                                                                                                                                                             | The students will be able to apply the know                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ledge to rep                                                                                                                                                                                            | present digita                                                                                                                                                           | al values in                                                                                                                                                     |
|                                                                                                                                                                                                                  | different logic families, including character                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | rization of th                                                                                                                                                                                          | ne noise mar                                                                                                                                                             | gins.                                                                                                                                                            |
| CO2:                                                                                                                                                                                                             | Students will be able to apply the knowled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ge to simul                                                                                                                                                                                             | ate and imple                                                                                                                                                            | ement                                                                                                                                                            |
|                                                                                                                                                                                                                  | combinational and sequential circuits using                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | VHDL sys                                                                                                                                                                                                | tems.                                                                                                                                                                    |                                                                                                                                                                  |
| CO3:                                                                                                                                                                                                             | Students will be able to practically implement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ent and eva                                                                                                                                                                                             | luate combin                                                                                                                                                             | national and                                                                                                                                                     |
|                                                                                                                                                                                                                  | sequential logic designs using various metr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ics: switchi                                                                                                                                                                                            | ng speed, ga                                                                                                                                                             | te count,                                                                                                                                                        |
|                                                                                                                                                                                                                  | and energy dissipation and power.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                         |                                                                                                                                                                          |                                                                                                                                                                  |
| *The mapp                                                                                                                                                                                                        | ing of CO/PO attainment/Graduate Attributes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | s are at App                                                                                                                                                                                            | endix-A                                                                                                                                                                  |                                                                                                                                                                  |
| To verify t                                                                                                                                                                                                      | he Truth-tables of all logic gates along wit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | h the const                                                                                                                                                                                             | ruction of co                                                                                                                                                            | ombinationa                                                                                                                                                      |
| •                                                                                                                                                                                                                | ng universal gates. To realize and verify the l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                         |                                                                                                                                                                          |                                                                                                                                                                  |
|                                                                                                                                                                                                                  | ealize 4-bit binary-gray & gray-binary conv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                         |                                                                                                                                                                          |                                                                                                                                                                  |
| -                                                                                                                                                                                                                | ary numbers of 2-bit each. To realize Full a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                         | -                                                                                                                                                                        |                                                                                                                                                                  |
|                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                         | sublide tor c                                                                                                                                                            |                                                                                                                                                                  |
|                                                                                                                                                                                                                  | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                         |                                                                                                                                                                          | •                                                                                                                                                                |
| 8x3 encode                                                                                                                                                                                                       | er. To design Full adder & full subtractor c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | rircuits usin                                                                                                                                                                                           | g 8x3 demu                                                                                                                                                               | ltiplexer. To                                                                                                                                                    |
| 8x3 encode design and                                                                                                                                                                                            | er. To design Full adder & full subtractor c<br>verify the Truth tables of all flip-flops. To de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | circuits usin<br>esign Mod-6                                                                                                                                                                            | g 8x3 demu<br>5/Mod-9 syn                                                                                                                                                | ltiplexer. To<br>chronous up                                                                                                                                     |
| 8x3 encode<br>design and<br>down coun                                                                                                                                                                            | er. To design Full adder & full subtractor c<br>verify the Truth tables of all flip-flops. To de<br>ter. To write and execute VHDL program for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | eircuits usin<br>esign Mod-6<br>r combinatio                                                                                                                                                            | g 8x3 demu<br>5/Mod-9 syn<br>onal & seque                                                                                                                                | ltiplexer. To<br>chronous up<br>ential circuit                                                                                                                   |
| 8x3 encode<br>design and<br>down coun<br>for Half/Fu                                                                                                                                                             | er. To design Full adder & full subtractor c<br>verify the Truth tables of all flip-flops. To de<br>ter. To write and execute VHDL program for<br>ll adder and subtractor, 4 bit binary – gray a                                                                                                                                                                                                                                                                                                                                                                                                                                                | circuits usin<br>esign Mod-6<br>r combination<br>and gray to                                                                                                                                            | g 8x3 demu<br>5/Mod-9 syn<br>onal & seque<br>binary conv                                                                                                                 | ltiplexer. To<br>chronous up<br>ential circuit<br>erter, for a 2                                                                                                 |
| 8x3 encode<br>design and<br>down coun<br>for Half/Fu<br>bit binary                                                                                                                                               | er. To design Full adder & full subtractor c<br>verify the Truth tables of all flip-flops. To de<br>ter. To write and execute VHDL program for<br>ll adder and subtractor, 4 bit binary – gray a<br>comparator circuit, 8x3 encoder and 8x3                                                                                                                                                                                                                                                                                                                                                                                                     | eircuits usin<br>esign Mod-6<br>r combination<br>and gray to<br>demultipl                                                                                                                               | g 8x3 demu<br>5/Mod-9 syn<br>onal & seque<br>binary conv<br>exer for ful                                                                                                 | ltiplexer. To<br>chronous up<br>ential circuit<br>erter, for a 2<br>ll adder and                                                                                 |
| 8x3 encode<br>design and<br>down coun<br>for Half/Fu<br>bit binary<br>subractor o                                                                                                                                | er. To design Full adder & full subtractor c<br>verify the Truth tables of all flip-flops. To de<br>ter. To write and execute VHDL program for<br>ll adder and subtractor, 4 bit binary – gray a<br>comparator circuit, 8x3 encoder and 8x3<br>perations. To write VHDL program for unive                                                                                                                                                                                                                                                                                                                                                       | eircuits usin<br>esign Mod-6<br>r combination<br>and gray to<br>demultipl                                                                                                                               | g 8x3 demu<br>5/Mod-9 syn<br>onal & seque<br>binary conv<br>exer for ful                                                                                                 | ltiplexer. To<br>chronous up<br>ential circuit<br>erter, for a 2<br>ll adder and                                                                                 |
| 8x3 encode<br>design and<br>down coun<br>for Half/Fu<br>bit binary<br>subractor o<br><b>Suggested</b>                                                                                                            | er. To design Full adder & full subtractor c<br>verify the Truth tables of all flip-flops. To de<br>ter. To write and execute VHDL program for<br>ll adder and subtractor, 4 bit binary – gray a<br>comparator circuit, 8x3 encoder and 8x3<br>perations. To write VHDL program for unive<br><b>Books:</b>                                                                                                                                                                                                                                                                                                                                      | eircuits usin<br>esign Mod-6<br>r combination<br>and gray to<br>demultiple<br>ersal shift-re                                                                                                            | g 8x3 demu<br>5/Mod-9 syn<br>onal & seque<br>binary conv<br>exer for ful<br>egister operat                                                                               | ltiplexer. To<br>chronous up<br>ential circuit<br>erter, for a 2<br>ll adder and<br>tions.                                                                       |
| 8x3 encode<br>design and<br>down count<br>for Half/Fu<br>bit binary<br>subractor o<br><b>Suggested</b><br>• R.P                                                                                                  | er. To design Full adder & full subtractor c<br>verify the Truth tables of all flip-flops. To de<br>ter. To write and execute VHDL program for<br>ll adder and subtractor, 4 bit binary – gray a<br>comparator circuit, 8x3 encoder and 8x3<br>perations. To write VHDL program for unive<br><b>Books:</b><br>. Jain, "Modern digital Electronics", Tata Mc                                                                                                                                                                                                                                                                                     | eircuits usin<br>esign Mod-<br>r combination<br>and gray to<br>demultiplersal shift-re<br>eGraw Hill,                                                                                                   | g 8x3 demu<br>5/Mod-9 syndonal & seque<br>binary conv<br>exer for ful<br>egister operate<br>4th edition, 2                                                               | ltiplexer. To<br>chronous up<br>ential circuit<br>erter, for a 2<br>ll adder and<br>tions.                                                                       |
| 8x3 encode<br>design and<br>down coun<br>for Half/Fu<br>bit binary<br>subractor o<br><b>Suggested</b><br>• R.P<br>• Dou                                                                                          | er. To design Full adder & full subtractor c<br>verify the Truth tables of all flip-flops. To de<br>ter. To write and execute VHDL program for<br>ll adder and subtractor, 4 bit binary – gray a<br>comparator circuit, 8x3 encoder and 8x3<br>perations. To write VHDL program for unive<br><b>Books:</b><br>. Jain, "Modern digital Electronics", Tata Mc<br>nglas Perry, "VHDL", Tata McGraw Hill, 4th                                                                                                                                                                                                                                       | eircuits usin<br>esign Mod-6<br>r combination<br>and gray to<br>demultiplersal shift-re<br>eGraw Hill,<br>n edition, 20                                                                                 | g 8x3 demu<br>5/Mod-9 syn<br>onal & seque<br>binary conv<br>exer for ful<br>egister operat<br>4th edition, 2<br>02.                                                      | ltiplexer. To<br>chronous up<br>ential circuit<br>erter, for a 2<br>ll adder and<br>tions.<br>2009.                                                              |
| 8x3 encode<br>design and<br>down coum<br>for Half/Fu<br>bit binary<br>subractor o<br><b>Suggested</b><br>• R.P<br>• Dou<br>• W.H                                                                                 | er. To design Full adder & full subtractor c<br>verify the Truth tables of all flip-flops. To de<br>ter. To write and execute VHDL program for<br>ll adder and subtractor, 4 bit binary – gray a<br>comparator circuit, 8x3 encoder and 8x3<br>perations. To write VHDL program for unive<br><b>Books:</b><br>. Jain, "Modern digital Electronics", Tata Mc<br>Iglas Perry, "VHDL", Tata McGraw Hill, 4th<br>I. Gothmann, "Digital Electronics- An introd                                                                                                                                                                                       | eircuits usin<br>esign Mod-6<br>r combination<br>and gray to<br>demultiplersal shift-re<br>eGraw Hill,<br>n edition, 20                                                                                 | g 8x3 demu<br>5/Mod-9 syn<br>onal & seque<br>binary conv<br>exer for ful<br>egister operat<br>4th edition, 2<br>02.                                                      | ltiplexer. To<br>chronous up<br>ential circuit<br>erter, for a 2<br>ll adder and<br>tions.<br>2009.                                                              |
| 8x3 encode<br>design and<br>down count<br>for Half/Fu<br>bit binary<br>subractor o<br><b>Suggested</b><br>• R.P<br>• Dou<br>• W.H<br>2 <sup>nd</sup>                                                             | er. To design Full adder & full subtractor c<br>verify the Truth tables of all flip-flops. To de<br>ter. To write and execute VHDL program for<br>ll adder and subtractor, 4 bit binary – gray a<br>comparator circuit, 8x3 encoder and 8x3<br>perations. To write VHDL program for unive<br><b>Books:</b><br>. Jain, "Modern digital Electronics", Tata Mc<br>Iglas Perry, "VHDL", Tata McGraw Hill, 4th<br>H. Gothmann, "Digital Electronics- An introd<br>edition ,2006.                                                                                                                                                                     | eircuits usin<br>esign Mod-<br>r combination<br>and gray to<br>demultiple<br>ersal shift-re<br>eGraw Hill,<br>redition, 20<br>luction to th                                                             | g 8x3 demu<br>5/Mod-9 syndonal & seque<br>binary convexer for ful<br>egister operate<br>4th edition, 2<br>02.<br>eory and pra                                            | ltiplexer. To<br>chronous up<br>ential circuits<br>erter, for a 2<br>ll adder and<br>tions.<br>2009.                                                             |
| 8x3 encode<br>design and<br>down count<br>for Half/Fu<br>bit binary<br>subractor of<br><b>Suggested</b><br>• R.P<br>• Dou<br>• W.H<br>2 <sup>nd</sup><br>• D.V                                                   | er. To design Full adder & full subtractor c<br>verify the Truth tables of all flip-flops. To de<br>ter. To write and execute VHDL program for<br>ll adder and subtractor, 4 bit binary – gray a<br>comparator circuit, 8x3 encoder and 8x3<br>perations. To write VHDL program for unive<br><b>Books:</b><br>. Jain, "Modern digital Electronics", Tata Mc<br>Iglas Perry, "VHDL", Tata McGraw Hill, 4th<br>H. Gothmann, "Digital Electronics- An introd<br>edition ,2006.                                                                                                                                                                     | circuits usin<br>esign Mod-6<br>r combination<br>and gray to<br>demultiple<br>ersal shift-re-<br>cGraw Hill,<br>n edition, 20<br>luction to the<br>McGraw Hi                                            | g 8x3 demu<br>5/Mod-9 syndonal & seque<br>binary convexer for ful<br>egister operate<br>4th edition, 2<br>02.<br>eory and pra                                            | Itiplexer. To<br>chronous up<br>ential circuit<br>erter, for a 2<br>Il adder and<br>tions.<br>2009.<br>actice", PHI,                                             |
| 8x3 encode<br>design and<br>down count<br>for Half/Fu<br>bit binary<br>subractor of<br><b>Suggested</b><br>• R.P<br>• Dou<br>• W.H<br>2 <sup>nd</sup><br>• D.V<br>• Cha                                          | er. To design Full adder & full subtractor c<br>verify the Truth tables of all flip-flops. To de<br>ter. To write and execute VHDL program for<br>ll adder and subtractor, 4 bit binary – gray a<br>comparator circuit, 8x3 encoder and 8x3<br>perations. To write VHDL program for unive<br><b>Books:</b><br>. Jain, "Modern digital Electronics", Tata Mc<br>nglas Perry, "VHDL", Tata McGraw Hill, 4th<br>H. Gothmann, "Digital Electronics- An introd<br>edition ,2006.<br>7. Hall, "Digital Circuits and Systems", Tata I<br>rles Roth, "Digital System Design using VH                                                                    | circuits usin<br>esign Mod-6<br>r combination<br>and gray to<br>demultiple<br>ersal shift-re-<br>cGraw Hill,<br>n edition, 20<br>luction to the<br>McGraw Hi                                            | g 8x3 demu<br>5/Mod-9 syndonal & seque<br>binary convexer for ful<br>egister operate<br>4th edition, 2<br>02.<br>eory and pra                                            | Itiplexer. To<br>chronous up<br>ential circuit<br>erter, for a 2<br>Il adder and<br>tions.<br>2009.<br>actice", PHI,                                             |
| 8x3 encode<br>design and<br>down coum<br>for Half/Fu<br>bit binary<br>subractor o<br><b>Suggested</b><br>• R.P<br>• Dou<br>• W.H<br>2 <sup>nd</sup><br>• D.V                                                     | er. To design Full adder & full subtractor c<br>verify the Truth tables of all flip-flops. To de<br>ter. To write and execute VHDL program for<br>ll adder and subtractor, 4 bit binary – gray a<br>comparator circuit, 8x3 encoder and 8x3<br>perations. To write VHDL program for unive<br><b>Books:</b><br>. Jain, "Modern digital Electronics", Tata Mc<br>nglas Perry, "VHDL", Tata McGraw Hill, 4th<br>H. Gothmann, "Digital Electronics- An introd<br>edition ,2006.<br>7. Hall, "Digital Circuits and Systems", Tata I<br>rles Roth, "Digital System Design using VH                                                                    | circuits usin<br>esign Mod-6<br>r combination<br>and gray to<br>demultiple<br>ersal shift-re-<br>cGraw Hill,<br>n edition, 20<br>luction to the<br>McGraw Hi                                            | g 8x3 demu<br>5/Mod-9 syndonal & seque<br>binary convexer for ful<br>egister operate<br>4th edition, 2<br>02.<br>eory and pra                                            | Itiplexer. To<br>chronous up<br>ential circuit<br>erter, for a 2<br>Il adder and<br>tions.<br>2009.<br>actice", PHI,                                             |
| 8x3 encode<br>design and<br>down coum<br>for Half/Fu<br>bit binary<br>subractor o<br><b>Suggested</b><br>• R.P<br>• Dou<br>• W.H<br>2 <sup>nd</sup><br>• D.V<br>• Cha<br>201                                     | er. To design Full adder & full subtractor c<br>verify the Truth tables of all flip-flops. To de<br>ter. To write and execute VHDL program for<br>ll adder and subtractor, 4 bit binary – gray a<br>comparator circuit, 8x3 encoder and 8x3<br>perations. To write VHDL program for unive<br><b>Books:</b><br>. Jain, "Modern digital Electronics", Tata Mc<br>Iglas Perry, "VHDL", Tata McGraw Hill, 4th<br>4. Gothmann, "Digital Electronics- An introd<br>edition ,2006.<br>7. Hall, "Digital Circuits and Systems", Tata I<br>rles Roth, "Digital System Design using VH<br>2.                                                              | eircuits usin<br>esign Mod-6<br>r combinatio<br>and gray to<br>demultiple<br>ersal shift-re<br>eGraw Hill,<br>n edition, 20<br>luction to the<br>McGraw Hi<br>DL", Tata M                               | g 8x3 demu<br>5/Mod-9 syndonal & seque<br>binary convexer for full<br>egister operate<br>4th edition, 2<br>02.<br>eory and pra<br>11, 1989<br>AcGraw Hill                | Itiplexer. To<br>chronous up<br>ential circuit<br>erter, for a 2<br>Il adder and<br>tions.<br>2009.<br>actice", PHI,<br>2nd edition                              |
| 8x3 encode<br>design and<br>down count<br>for Half/Fu<br>bit binary<br>subractor o<br><b>Suggested</b><br>• R.P<br>• Dou<br>• W.H<br>2 <sup>nd</sup><br>• D.V<br>• Cha<br>201                                    | er. To design Full adder & full subtractor c<br>verify the Truth tables of all flip-flops. To de<br>ter. To write and execute VHDL program for<br>ll adder and subtractor, 4 bit binary – gray a<br>comparator circuit, 8x3 encoder and 8x3<br>perations. To write VHDL program for unive<br><b>Books:</b><br>. Jain, "Modern digital Electronics", Tata Mc<br>nglas Perry, "VHDL", Tata McGraw Hill, 4th<br>H. Gothmann, "Digital Electronics- An introd<br>edition ,2006.<br>7. Hall, "Digital Circuits and Systems", Tata I<br>rles Roth, "Digital System Design using VH                                                                    | circuits usin<br>esign Mod-6<br>r combination<br>and gray to<br>demultiple<br>ersal shift-re-<br>cGraw Hill,<br>n edition, 20<br>luction to the<br>McGraw Hi                                            | g 8x3 demu<br>5/Mod-9 syndonal & seque<br>binary convexer for ful<br>egister operate<br>4th edition, 2<br>02.<br>eory and pra                                            | Itiplexer. To<br>chronous up<br>ential circuits<br>erter, for a 2<br>Il adder and<br>tions.<br>2009.<br>actice", PHI,<br>2nd edition<br>Pre-                     |
| 8x3 encode<br>design and<br>down coum<br>for Half/Fu<br>bit binary<br>subractor o<br>Suggested<br>• R.P<br>• Dou<br>• W.H<br>2 <sup>nd</sup><br>• D.V<br>• Cha<br>201<br>Course<br>Code                          | er. To design Full adder & full subtractor c<br>verify the Truth tables of all flip-flops. To de<br>ter. To write and execute VHDL program for<br>ll adder and subtractor, 4 bit binary – gray a<br>comparator circuit, 8x3 encoder and 8x3<br>perations. To write VHDL program for unive<br><b>Books:</b><br>. Jain, "Modern digital Electronics", Tata Mc<br>Iglas Perry, "VHDL", Tata McGraw Hill, 4th<br>4. Gothmann, "Digital Electronics- An introd<br>edition ,2006.<br>7. Hall, "Digital Circuits and Systems", Tata I<br>rles Roth, "Digital System Design using VH<br>2.                                                              | circuits usin<br>esign Mod-6<br>r combination<br>and gray to<br>demultiple<br>ersal shift-re-<br>cGraw Hill,<br>n edition, 20<br>luction to the<br>McGraw Hi<br>DL", Tata M                             | g 8x3 demu<br>5/Mod-9 syndonal & seque<br>binary convexer for ful<br>egister operate<br>4th edition, 2<br>02.<br>eory and pra<br>11, 1989<br>AcGraw Hill<br>Credits      | Itiplexer. To<br>chronous up<br>ential circuit<br>erter, for a 2<br>11 adder and<br>tions.<br>2009.<br>actice", PHI,<br>2nd edition<br>Pre-<br>requisite         |
| 8x3 encode<br>design and<br>down courr<br>for Half/Fu<br>bit binary<br>subractor o<br><b>Suggested</b><br>• R.P<br>• Dou<br>• W.H<br>2 <sup>nd</sup><br>• D.V<br>• Cha<br>201<br>• Course<br>Code<br>EC208       | er. To design Full adder & full subtractor c<br>verify the Truth tables of all flip-flops. To de-<br>ter. To write and execute VHDL program for<br>ll adder and subtractor, 4 bit binary – gray a<br>comparator circuit, 8x3 encoder and 8x3<br>perations. To write VHDL program for unive<br><b>Books:</b><br>. Jain, "Modern digital Electronics", Tata Mc<br>nglas Perry, "VHDL", Tata McGraw Hill, 4th<br>H. Gothmann, "Digital Electronics- An introd<br>edition ,2006.<br>7. Hall, "Digital Circuits and Systems", Tata I<br>rles Roth, "Digital System Design using VH<br>2.<br>Course Name<br>Electronic System Design                  | eircuits usin<br>esign Mod-6<br>r combinatio<br>and gray to<br>demultiple<br>ersal shift-re<br>eGraw Hill,<br>n edition, 20<br>luction to the<br>McGraw Hi<br>DL", Tata M                               | g 8x3 demu<br>5/Mod-9 syndonal & seque<br>binary convexer for full<br>egister operate<br>4th edition, 2<br>02.<br>eory and pra<br>11, 1989<br>AcGraw Hill                | Itiplexer. To<br>chronous up<br>ential circuits<br>erter, for a 2<br>Il adder and<br>tions.<br>2009.<br>actice", PHI,<br>2nd edition<br>Pre-                     |
| 8x3 encode<br>design and<br>down courr<br>for Half/Fu<br>bit binary<br>subractor o<br>Suggested<br>• R.P<br>• Dou<br>• W.H<br>2 <sup>nd</sup><br>• D.V<br>• Cha<br>201<br>• Course<br>Code<br>EC208<br>Course Ou | er. To design Full adder & full subtractor c<br>verify the Truth tables of all flip-flops. To de<br>ter. To write and execute VHDL program for<br>ll adder and subtractor, 4 bit binary – gray a<br>comparator circuit, 8x3 encoder and 8x3<br>perations. To write VHDL program for unive<br><b>Books:</b><br>. Jain, "Modern digital Electronics", Tata Mc<br>Iglas Perry, "VHDL", Tata McGraw Hill, 4th<br>H. Gothmann, "Digital Electronics- An introd<br>edition ,2006.<br>7. Hall, "Digital Circuits and Systems", Tata I<br>rles Roth, "Digital System Design using VH<br>2.<br>Course Name<br>Electronic System Design<br>tcomes (CO)**: | circuits usin<br>esign Mod-6<br>r combination<br>and gray to<br>demultiple<br>ersal shift-reference<br>cGraw Hill,<br>n edition, 20<br>luction to the<br>McGraw Hill<br>DL", Tata M                     | g 8x3 demu<br>5/Mod-9 syndonal & seque<br>binary convexer for ful<br>egister operate<br>4th edition, 2<br>02.<br>eory and pra<br>11, 1989<br>AcGraw Hill<br>Credits<br>4 | Itiplexer. To<br>chronous up<br>ential circuit<br>erter, for a 2<br>il adder and<br>tions.<br>2009.<br>actice", PHI,<br>2nd edition<br>Pre-<br>requisite<br>NIL  |
| 8x3 encode<br>design and<br>down courr<br>for Half/Fu<br>bit binary<br>subractor o<br><b>Suggested</b><br>• R.P<br>• Dou<br>• W.H<br>2 <sup>nd</sup><br>• D.V<br>• Cha<br>201<br>• Course<br>Code<br>EC208       | er. To design Full adder & full subtractor c<br>verify the Truth tables of all flip-flops. To de-<br>ter. To write and execute VHDL program for<br>ll adder and subtractor, 4 bit binary – gray a<br>comparator circuit, 8x3 encoder and 8x3<br>perations. To write VHDL program for unive<br><b>Books:</b><br>. Jain, "Modern digital Electronics", Tata Mc<br>nglas Perry, "VHDL", Tata McGraw Hill, 4th<br>H. Gothmann, "Digital Electronics- An introd<br>edition ,2006.<br>7. Hall, "Digital Circuits and Systems", Tata I<br>rles Roth, "Digital System Design using VH<br>2.<br>Course Name<br>Electronic System Design                  | eircuits usin<br>esign Mod-6<br>r combination<br>and gray to<br>a demultiple<br>ersal shift-reference<br>cGraw Hill,<br>n edition, 20<br>luction to the<br>McGraw Hill<br>DL", Tata M<br>L-T-P<br>0-0-8 | g 8x3 demu<br>5/Mod-9 syndonal & seque<br>binary convexer for ful<br>egister operate<br>4th edition, 2<br>02.<br>eory and pra<br>11, 1989<br>AcGraw Hill<br>Credits<br>4 | Itiplexer. To<br>chronous up<br>ential circuits<br>erter, for a 2<br>il adder and<br>tions.<br>2009.<br>actice", PHI,<br>2nd edition<br>Pre-<br>requisite<br>NIL |

| CO2: | Students will able to get the idea about the different trends and limitation of CMOS technology scaling      |
|------|--------------------------------------------------------------------------------------------------------------|
| CO3: | Students will acquire the knowledge regarding the various digital interfacing systems like UART, SPI and I2C |

Data Storage Elements: Concept of memory, ROM in verilog, RAM, applications on data storage elements, FPGA building blocks used in data storage elements. Sequential Circuits: Sequential circuit analysis, FSMs: definition of state and output equations, state table, state diagram, state representation in verilog, timings in sequential circuits-synchronous operation and asynchronous operation, shift register as a sequential circuit, counter as a sequential circuit, sequential circuit design and applications of sequential circuits, FPGA building blocks using sequential circuits. Digital Interfacing: Universal Asynchronous Receiver/ Transmitter(UART), UART Applications, Serial Peripheral Interface(SPI), Inter-integrated Circuit(I2C). Effects of Technology Scaling on CMOS Logic Styles: Trends and Limitations of CMOS Technology Scaling – MOSFET Scaling Trends, Challenges of MOSFET Scaling - Short- Channel Effects, Subthreshold Leakage Currents, Dielectric Breakdown, Hot Carrier effects, Soft Errors, Velocity Saturation and Mobility Degradation, DIBL, Scaling down Vdd/Vth ratio. Advanced Device Technology: SOI, SiGe, strained Si, Alternative oxide/gate materials, Alternative geometries (raised source/drain, dual gate, vertical, FinFET), Memory Devices (DRAM, Flash). Sub-micron and Deep sub-micron Device Modeling.

- Kang, S. and Leblebici, Y., CMOS Digital Integrated Circuits Analysis and Design, Tata McGraw Hill (2008) 3rd ed.
- Unsalan,C and Tar,B.,Digital system design with FPGA, McGraw Hill Education(India) Pvt Ltd(2018).

| Course                                                                            | Course Name                           | L-T-P        | Credits        | Pre-requisite        |  |
|-----------------------------------------------------------------------------------|---------------------------------------|--------------|----------------|----------------------|--|
| Code                                                                              |                                       |              |                |                      |  |
| EC211                                                                             | High Speed VLSI Design                | 3-1-0        | 3              | Microelectronics     |  |
| Course Outcomes (CO)**:                                                           |                                       |              |                |                      |  |
| CO1:                                                                              | Students will be able understand the  | need High    | Speed Circ     | uits Design in the   |  |
|                                                                                   | era of modern technology.             |              |                |                      |  |
| CO2:                                                                              | Apply the Method of Logical Effort    | in digital c | circuits to de | sign high speed      |  |
|                                                                                   | circuits.                             |              |                |                      |  |
| CO3:                                                                              | Students will have an exposure of the | e types of   | Dynamic log    | gic styles and their |  |
|                                                                                   | applications in high speed Integrated | circuit de   | signing.       |                      |  |
| CO4:                                                                              | Students will have an experience on   | Clocking     | strategies an  | d Clocking styles    |  |
|                                                                                   | in various types of digital circuits. |              |                |                      |  |
| *The mapp                                                                         | ing of CO/PO attainment/Graduate At   | tributes ar  | e at Append    | lix-A                |  |
| Introduction of High Speed VLSI Circuits Design, Ideal and non-ideal interconnect |                                       |              |                |                      |  |
| issues, Die                                                                       | lectric Thickness and Permittivity, I | Delay in a   | a logic gate   | , Multi-stage logic  |  |
| networks, 0                                                                       | Choosing the best number of stages,   | Model of     | a logic, De    | lay in a logic gate, |  |



minimizing delay along a path, Choosing the length of a path, Using the wrong number of stages, Using the wrong gate size, Static CMOS, DCVS Logic, Non-Clocked Pass Gate Families. Clocked Logic Styles: Single-Rail Domino Logic Styles, Dual-Rail Domino Structures, Latched Domino Structures, Clocked Pass Gate Logic, Process Induced Variations, Design Induced Variations, Application Induced Variations, Noise, Basic Latch Design, latching single-ended logic, Latching Differential Logic, Race Free Latches for Pre-Charged Logic Asynchronous Latch Techniques, Signaling Standards, Chip-to-Chip Communication Networks, ESD Protection, Clock Jitter, Clock Skew, Clock Generation, Clock Distribution, Asynchronous Clocking Techniques.

### Suggested Books:

- Sung-Mo (Steve) Kang, Yusuf Leblebigi, "CMOS Digital integrated circuit analysis and design", by Tata Mcgraw-Hill, (2007).
- Chung-Kang Cheng, John Lillis, Shen Lin and Norman H.Chang, "Interconnect Analysis and Synthesis", AwileyInterscience Publication(2000).
- L.O.Chua, C.A.Desoer, and E.S.Kuh, "Linear and Nonlinear circuits", McGraw-Hill, 1987.

| Course                  | Course Name                                                                            | L-T-P       | Credits        | Pre-requisite       |  |  |
|-------------------------|----------------------------------------------------------------------------------------|-------------|----------------|---------------------|--|--|
| Code                    |                                                                                        |             |                |                     |  |  |
| EC212                   | High Speed VLSI Design Lab                                                             | 0-0-2       | 1              | Microelectronics    |  |  |
| Course Outcomes (CO)**: |                                                                                        |             |                |                     |  |  |
| CO1:                    | Students will be able to design high s                                                 | speed VLS   | SI circuits pr | actically with      |  |  |
|                         | different                                                                              |             |                |                     |  |  |
| CO2:                    | Calculate delay associated with logic                                                  | gates usin  | ng industry o  | oriented design     |  |  |
|                         | tools                                                                                  |             |                |                     |  |  |
| CO3:                    | Student will get practical skills to an                                                | alyze dela  | y and latchin  | ng condition in     |  |  |
|                         | Clock based circuits using EDA tool                                                    | s           |                |                     |  |  |
| *The mapp               | oing of CO/PO attainment/Graduate At                                                   | tributes ar | e at Append    | lix-A               |  |  |
| Calculate d             | Calculate delays in CMOS based circuits using EDA tool, delay models in VLSI circuits, |             |                |                     |  |  |
| delays in               | delays in multi-stage logic networks, designing circuits of minimum delay, delay       |             |                |                     |  |  |
| dependence              | e on number of stages, static CMOS                                                     | and dyna    | mic CMOS       | delay calculations, |  |  |
| delay estir             | nation in clocked logic styles clock                                                   | ed nass a   | ate logic ci   | remit designing of  |  |  |

delay estimation in clocked logic styles, clocked pass gate logic circuit, designing of latchs and calculate delay, Race condition in digital circuits, clock jitter, clock skew in digital logic, delay estimation using asynchronous clock

- Sung-Mo (Steve) Kang, Yusuf Leblebigi, "CMOS Digital integrated circuit analysis and design", by Tata Mcgraw-Hill, (2007).
- Chung-Kang Cheng, John Lillis, Shen Lin and Norman H.Chang, "Interconnect Analysis and Synthesis", AwileyInterscience Publication(2000).
- L.O.Chua, C.A.Desoer, and E.S.Kuh, "Linear and Non linear circuits", McGraw-Hill, 1987.

| Course    | Course Name                                                               | L-T-P        | Credits | Pre-      |  |
|-----------|---------------------------------------------------------------------------|--------------|---------|-----------|--|
| Code      |                                                                           |              |         | requisite |  |
| EC213     | Information Theory and Coding                                             | 4-0-0        | 4       | NIL       |  |
| Course Ou | tcomes (CO)**:                                                            |              |         |           |  |
| CO1:      | Design the channel performance using Info                                 | rmation theo | ory     |           |  |
| CO2:      | Comprehend various error control code properties                          |              |         |           |  |
| CO3:      | O3:         Apply linear block codes for error detection and correction   |              |         |           |  |
| CO4:      | Apply convolution codes for performance analysis & cyclic codes for error |              |         |           |  |
|           | detection and correction.                                                 |              |         |           |  |

Information Theory-Introduction; Discrete and Continuous Messages – Message Sources, Amount of Information; Average Information and Entropy; Characteristics of a Discrete Memoryless Channel; Mutual Information; Shannon's Channel-Coding Theorem; Channel Capacity. Source Coding-Introduction; Basics of Source Encoding - Classification of Source Codes, Kraft-McMillan Inequality, Source-Coding Theorem; Source Coding Techniques – Shannon-Fano Source Code, Huffman Source Code, Lempel-Ziv Code. Error-Control Channel Coding-Types of Errors and Error-Control Codes; Hamming Codes; Cyclic Codes; BCH Codes; Hadamard Codes; LDPC Codes; Convolution Coding and Decoding; Burst-Error Correction Techniques – Interleaving, RS Codes, Turbo Codes. Spread-Spectrum Communications-Introduction, Principles of Spread-Spectrum Modulation; Spread-Spectrum Techniques – Frequency Hopping Spread-Spectrum (FHSS), FHSS with BFSK or M-ary FSK, Performance of FHSS System, Direct Sequence Spread-Spectrum (DSSS), Comparison of FHSS and DSSS, Salient Features of Spread-Spectrum Systems.

- T L Singal, Digital Communication, ISBN: 978-93-392-1952-9, McGraw Hill Education, First Edition, Copyright © 2015.
- Moser and Chen, A Student's Guide to Coding and Information Theory, ISBN: 978-1-107-68457-7, Cambridge University Press, First Edition, Copyright © 2012.
- Gravano, An Introduction to Error Control Codes, ISBN: 978-0-199-23678-7, Oxford University Press, 1st edition, 2007.
- Richard B. Wells, Applied Coding and Information Theory for Engineers, Pearson Education, 1st edition, 2009.

| Course<br>Code | Course Name                                                                                                                   | L-T-P | Credits       | Pre-<br>requisite |  |
|----------------|-------------------------------------------------------------------------------------------------------------------------------|-------|---------------|-------------------|--|
| EC214          | Introduction to MEMS                                                                                                          | 0-0-8 | 4             | Nil               |  |
| Course Ou      | tcomes (CO)**:                                                                                                                |       |               |                   |  |
| CO1:           | Develop the basic understanding of micro sensors and actuators with their types and applications in real world.               |       |               |                   |  |
| CO2:           | Learn about the fabrication processes involved in designing of micro devices<br>and employing them in real world applications |       |               |                   |  |
| CO3:           | Understand how micro manufacturing is do<br>considerations in developing microdesign s                                        |       | are the vario | ous design        |  |

Overview of MEMS and Microsystems, Pressure Sensors, Micro-actuators, Micro actuation using electrostatic forces and piezoelectric, Scaling Laws in Micro actuation, Materials for MEMS and Microsystems, Epitaxy, Oxidation, Types of Oxidation, Oxidation Techniques, Introduction to Lithography, Lithographic techniques: Electron, Optical, X-Ray, Ion Beam, Etching, Diffusion Ion Implantation, Doping, PVD and CVD and Plasma assisted deposition, Microsystems fabrication processes, Micro manufacturing Overview, Bulk Micro manufacturing, Surface Micromachining, LIGA Process, Microsystems Design Considerations.

- MEMS and Microsystem Design and Manufacture, by Tai-Ran Hsu, Tata McGraw Hill Publication.
- VLSI Technology by S.M. Sze, Tata McGraw Hill Publication.

| Course       | Course Name                                                                | L-T-P         | Credits       | Pre-         |  |  |
|--------------|----------------------------------------------------------------------------|---------------|---------------|--------------|--|--|
| Code         |                                                                            |               |               | requisite    |  |  |
| EC215        | Introduction to Mobile Technology                                          | 0-0-8         | 4             | NIL          |  |  |
| Course Ou    | Course Outcomes (CO)**:                                                    |               |               |              |  |  |
| CO1:         | Students will gain complete knowledge abo                                  | out mobile n  | etwork eleme  | ents,        |  |  |
|              | Service Flow and the operation of mobile                                   | networks      |               |              |  |  |
| CO2:         | Understand the function of service provide                                 | r operational | support syst  | em and       |  |  |
|              | anatomy of a cell site.                                                    |               |               |              |  |  |
| CO3:         | Students will learn about various technolog                                | gies of mobil | e networks in | ncluding     |  |  |
|              | FWA, GSM architecture, UMTS and LTE.                                       |               |               |              |  |  |
| CO4:         | Students will acquire basic knowledge abo                                  | ut API and R  | ESTfull web   | services.    |  |  |
| *The mappi   | ing of CO/PO attainment/Graduate Attribute                                 | s are at Appe | endix-A       |              |  |  |
| Introduction | on into mobility, Mobility as a service, Pac                               | ket switchin  | g and Circui  | t switching, |  |  |
| Technolog    | gies of mobile networks including FWA, C                                   | GSM archite   | cture, UMTS   | S and LTE,   |  |  |
| Mobile de    | evices and their specializations, API and                                  | l technologi  | es: Websock   | kets, HTTP   |  |  |
| requests, H  | Restful API, Mobile OS and their possibilitie                              | s and limitat | ions.         |              |  |  |
| Suggested 1  | Suggested Books:                                                           |               |               |              |  |  |
|              | □ Wilkinson, N. Next generation networks services: Technologies and        |               |               |              |  |  |
| strat        | strategies. Chichester: John Wiley & Sons, 2002. 196 p. ISBN 0-471-48667-1 |               |               |              |  |  |
|              | Stallings, W. Wireless communications a                                    | and networks  | . Upper Sado  | lle River:   |  |  |
| Prer         | ntice Hall, 2002. 584 p. ISBN 0-13-040864-6                                | Ď             |               |              |  |  |

| Course      | Course Name                                                                       | L-T-P       | Credits    | Pre-         |  |
|-------------|-----------------------------------------------------------------------------------|-------------|------------|--------------|--|
| Code        |                                                                                   |             |            | requisite    |  |
| EC217       | IoT and Industrial Applications                                                   | 4-0-0       | 4          | NIL          |  |
| Course Outo | comes (CO)*:                                                                      |             |            |              |  |
| CO1:        | <b>CO1:</b> The student would be able to interpret the concept of industrial IoT. |             |            |              |  |
| CO2:        | CO2: To design IIoT aaplication using the communication protocols                 |             |            |              |  |
| CO3:        | The student would be able to highlight                                            | the key att | ributes of | industry 4.0 |  |



and its charactersitics.

\*The mapping of CO/PO attainment/Graduate Attributes are at Appendix-A

Industrial Internet, Key IIoTTechnologies, Innovation and the IIoT, Key Opportunities and Benefits, IIoT Reference Architecture, The IIC Industrial Internet Reference Architecture, Industrial Internet Architecture Framework (IIAF), Industrial Internet Viewpoints, Control domain ,Operations domain, Information domain, Application Business domain. Designing Industrial Internet Systems: Architectural domain. Topology, Key System Characteristics, Key Functions of the Communication Layer. The Concept of the IIoT, The Proximity Network, WSN Edge Node, WSN Network Protocols, Low-Power Technologies, Designing Low-Power Device Networks, Legacy Industrial Protocols, Modern Communication Protocols, Wireless Communication Technologies, Proximity Network Communication Protocols. IIoT WAN Technologies and Protocols: IIoT Device Low-Power WAN Optimized Technologies for M2M, SigFox, LoRaWAN, Wave, Dash7, Ingénue RPMA, Low Power Wi-Fi, LTE Category-M, Weightless, Millimeter Radio. Securing the Industrial Internet: PLCs and DCS, Securing the OT, Network Level: Potential Security Issues, System Level: Potential Security Issues, Identity Access Management, Introducing Industry 4.0, Defining Industry 4.0, Four Main Characteristics of Industry 4.0, The Value Chain, Creating a Value Chain, Creating a Value Chain, Cost Differential, Benefits to Business, Industry 4.0 Design Principles, Building Blocks of Industry 4.0, Industry 4.0 Reference Architecture. Industrial Internet Use-Cases: Healthcare, Oil and Gas Industry, Smart Office, Logistics and the Industrial Internet, IOT Innovations in Retail.

- Industry 4.0: The Industrial Internet of Things, by Alasdair Gilchrist, Apress publication.
- Industrial sensors and control in communication networks, by Dong-seong Kim Hoatrang-Dang, Springer publication.

| Course                                                                               | Course Name                                                            | L-T-P       | Credits       | Pre-requisite       |  |  |
|--------------------------------------------------------------------------------------|------------------------------------------------------------------------|-------------|---------------|---------------------|--|--|
| Code                                                                                 |                                                                        |             |               |                     |  |  |
| EC220                                                                                | Low power VLSI System Design                                           | 3-1-0       | 3             | Microelectronics    |  |  |
|                                                                                      |                                                                        |             |               |                     |  |  |
| Course Ou                                                                            | tcomes (CO)**:                                                         |             | I             |                     |  |  |
| CO1:                                                                                 | Identify the requirement of low power                                  | system de   | sign and phy  | ysics of power      |  |  |
|                                                                                      | dissipation in microelectronic devices                                 |             |               |                     |  |  |
| CO2:                                                                                 | Solve the issues for power minimization                                | on in ICs a | nd apply the  | m in scaling of ICs |  |  |
| CO3:                                                                                 | Perform probabilistic power analysis to                                | echniques   | to calculate  | power required for  |  |  |
|                                                                                      | microelectronic devices and carry pow                                  | er optimiz  | ation at logi | c level and circuit |  |  |
|                                                                                      | level.                                                                 |             |               |                     |  |  |
| *The mapp                                                                            | *The mapping of CO/PO attainment/Graduate Attributes are at Appendix-A |             |               |                     |  |  |
| Introduction: Need for low power VLSI chips, Sources of power dissipation on Digital |                                                                        |             |               |                     |  |  |
| Integrated                                                                           | circuits. Emerging Low power appro                                     | aches. Ph   | ysics of po   | wer dissipation in  |  |  |
| CMOS dev                                                                             | rices. Sources of Power Dissipation: D                                 | ynamic di   | ssipation in  | CMOS, Transistor    |  |  |



sizing & gate oxide thickness, Impact of technology Scaling, Technology & Device innovation. Power estimation, Simulation Power analysis: SPICE circuit simulators, gate level logic simulation, capacitive power estimation, static state power, gate level capacitance estimation, architecture level analysis, Monte Carlo simulation. Probabilistic power analysis: Random logic signals, probability & frequency, probabilistic power analysis techniques, signal entropy. Low Power Design: Circuit level: Power consumption in circuits. Flip Flops & Latches design, high capacitance nodes, low power digital cells library, logic level, Gate reorganization, signal gating, logic encoding, state machine encoding, pre-computation logic Leakage Power Minimization Approaches: Variable threshold voltage CMOS (VTCMOS) approach. Multi-threshold-voltage CMOS (MTCMOS), Dual-Vt assignment approach (DTCMOS), Transistor stacking. Low Power Static RAM Architecture: Architecture of SRAM array, Reduced Voltage Swings on Bit Lines, Reducing power in memory peripheral circuits.

- Kaushik Roy, Sharat Prasad, "Low-Power CMOS VLSI Circuit Design" Wiley.
- Rabaey, Pedram, "Low power design methodologies" Kluwer Academic, 1997.
- Gary K. Yeap, "Practical Low Power Digital VLSI Design", KAP, 2002.

| Course                                                                                    | Course Name                            | L-T-P        | Credits        | Pre-requisite       |  |  |  |
|-------------------------------------------------------------------------------------------|----------------------------------------|--------------|----------------|---------------------|--|--|--|
| Code                                                                                      |                                        |              |                |                     |  |  |  |
| EC221                                                                                     | Low power VLSI System Design           | 0-0-2        | 1              | Microelectronics    |  |  |  |
|                                                                                           | Lab                                    |              |                |                     |  |  |  |
| Course Ou                                                                                 | tcomes (CO)**:                         |              | •              | •                   |  |  |  |
| CO1:                                                                                      | Ability to calculate and analyze power | in digital   | circuits usin  | g industry related  |  |  |  |
|                                                                                           | design tools.                          |              |                |                     |  |  |  |
| CO2:                                                                                      | Design memory using EDA tools by ap    | oplying co   | ncepts of po   | wer dissipation.    |  |  |  |
| *The mapp                                                                                 | ing of CO/PO attainment/Graduate Attri | butes are    | at Appendix    | -A                  |  |  |  |
| Calculate p                                                                               | ower in CMOS circuits using EDA tool,  | , calculatio | on of static a | nd dynamic power,   |  |  |  |
| measuring                                                                                 | effect of scaling on power dissipation | , power e    | stimation u    | sing SPICE circuit  |  |  |  |
| simulators,                                                                               | gate level logic simulation, Monte-ca  | rlo simul    | ation of VI    | SI circuits, Power  |  |  |  |
| dissipation                                                                               | in combinational circuits, Power dise  | sipation in  | n latches, f   | lip-flops and other |  |  |  |
| sequential circuits using Monte-carlo simulation, power consumption in state machines,    |                                        |              |                |                     |  |  |  |
| calculation of leakage power using simulation tools, power estimation in 1-bit SRAM cell. |                                        |              |                |                     |  |  |  |
| Suggested                                                                                 | Books                                  | -            |                |                     |  |  |  |
| • Kaushik Roy Sharat Prasad "Low-Power CMOS VI SI Circuit Design" Wiley                   |                                        |              |                |                     |  |  |  |

- Kaushik Roy, Sharat Prasad, "Low-Power CMOS VLSI Circuit Design" Wiley.
- Rabaey, Pedram, "Low power design methodologies" Kluwer Academic, 1997.
- Gary K. Yeap, "Practical Low Power Digital VLSI Design", KAP, 2002.

| Course<br>Code | Course Name                    |           | L-T-P | Credits | Pre-requisite |
|----------------|--------------------------------|-----------|-------|---------|---------------|
| EC222          | Microwave and<br>Communication | Satellite | 3-1-0 | 3       | NIL           |

| Course C | Outcomes (CO)**:                                                               |
|----------|--------------------------------------------------------------------------------|
| CO1:     | Students will gain complete knowledge about the significance, types and        |
|          | characteristics of various microwave solid state devices                       |
| CO2:     | Analyze mathematically the operation and working of various tubes or sources   |
|          | for the transmission of the microwave frequencies                              |
| CO3:     | Students will gain the basic understanding about the principles and working of |
|          | RADAR.                                                                         |
| CO4:     | Students will aquire basic understanding of satellite communcation and various |
|          | design links in satellite communication                                        |

\*The mapping of CO/PO attainment/Graduate Attributes are at Appendix-A

Introduction to microwave , Klystrons, Reflex Klystrons, Magnetrons and TWT, Classification of solid state microwave devices, Microwave transistors, Diode(Tunnel, Varactor, PIN), Transferred electron devices (Gunn Diode), Avalanche transit time effect, Analysis of MW components using s-parameters, junctions, directional coupler , bends and corner, MW posts, S.S. Tuner, attenuators, phase shifter, ferrite devices (isolator , circulator , gyrator), cavity resonator, matched termination, Introduction to radar communication, Basic principle: block diagram and operation of radar, Radar range equation, PRFs and range ambiguities, application of radar, Doppler radar(Doppler determine of velocity, CW radar and its limitation, FMCW radar, basic principle and operation of MTI radar, delay line cancellers, blind speed, Origin of Satellite Communication, Technical characteristics of a satellite communication to Communication Satellite Link Design, General link design equation, system noise temperature, C/N & G/T ratio, atmospheric & ionospheric effects on link design, complete link design, interference effects on complete link design, earth station parameters.

- Telecommunication Engineering 3rd Edition, by John Dunlop and Smith, CRC Press.
- Electromagnetic waves and radiating systems, Zedan and Balmani.
- Foundations for Microwave Engineering, R. E. Collin, McGraw Hill.
- Satellite Communications, Timothy Pratt, Charles W. Bostian.

| Course      | Course Name                                                            | L-T-P      | Credits        | Pre-requisite  |  |  |
|-------------|------------------------------------------------------------------------|------------|----------------|----------------|--|--|
| Code        |                                                                        |            |                |                |  |  |
| EC223       | Microwave and Satellite                                                | 0-0-2      | 1              | NIL            |  |  |
|             | Communication Lab                                                      |            |                |                |  |  |
| Course Ou   | itcomes (CO)**:                                                        |            |                |                |  |  |
| CO1:        | Students will be able to design and use                                | a microw   | ave test benc  | h to analyze   |  |  |
|             | various types of microwave measureme                                   | ents.      |                |                |  |  |
| CO2:        | Students will be able to measure the pa                                | rameters a | and character  | ristics of the |  |  |
|             | various waveguide components.                                          |            |                |                |  |  |
| CO3:        | Acquire an understanding of various characteristics of Microwave Tee's |            |                |                |  |  |
|             | through practical demonstrations.                                      |            |                |                |  |  |
| <b>CO4:</b> | Students will be able determine the rad                                | iation cha | racteristics a | and gain of an |  |  |



antenna

\*The mapping of CO/PO attainment/Graduate Attributes are at Appendix-A

Study of microwave components and instruments, Measurement of klystron characteristics, To study the frequency and wavelength of propagating wave in a rectangular wave guide, Measurement of VSWR and standing wave ratio, Measurement of Directivity and coupling coefficient of a directional coupler, Calibration of the attenuation constant of an attenuator To Study the characteristics of various microwave Tee's. Determination of the radiation characteristics and gain of an antenna. Measurement of crystal characteristics and proof of the square law characteristics of the diode.

## Suggested Books:

- Telecommunication Engineering 3rd Edition, by John Dunlop and Smith, CRC Press.
- Electromagnetic waves and radiating systems, Zedan and Balmani.
- Foundations for Microwave Engineering, R. E. Collin, McGraw Hill.
- Satellite Communications, Timothy Pratt, Charles W. Bostian.

| Course        | Course Name                                                                              | L-T-P       | Credits        | Pre-requisite       |  |  |
|---------------|------------------------------------------------------------------------------------------|-------------|----------------|---------------------|--|--|
| Code<br>EC224 | Mixed Signal Circuit Design                                                              | 4-0-0       | 4              | Analog              |  |  |
| EC224         | Wixed Signal Circuit Design                                                              | 4-0-0       |                | Electronics,        |  |  |
|               |                                                                                          |             |                | DELD                |  |  |
| Course Or     | itcomes (CO)**:                                                                          |             |                |                     |  |  |
| CO1:          | Apply knowledge of mathematics and                                                       | engineerir  | ng to design ( | MOS analog          |  |  |
| 001.          | circuits to achieve desired performance                                                  |             |                | entos unulog        |  |  |
| CO2:          | Identify, formulates, and solve engine                                                   | -           |                | rea of mixed_       |  |  |
| 02.           | signal design.                                                                           | cring probl |                | ica of mixed-       |  |  |
| CO3:          | Design and implement various types of                                                    | f mixed ai  | anal integrat  | ad airquit for real |  |  |
| 005:          |                                                                                          | n mixeu-si  | gilai integrat | eu circuit foi feai |  |  |
| *T1           | world applications.                                                                      |             | - 4            | A                   |  |  |
|               | bing of CO/PO attainment/Graduate Attr                                                   |             |                |                     |  |  |
| -             | nal Introduction and IC Process. CMOS                                                    | -           |                |                     |  |  |
|               | as diode connected load and current                                                      |             |                | •                   |  |  |
| U             | on, Source follower and common ga                                                        | 0           |                | 0 1                 |  |  |
| -             | of circuits). Cascade Stage: Cascode ar                                                  | -           |                |                     |  |  |
| -             | Differential Amplifiers: Basic different                                                 | -           |                | -                   |  |  |
|               | liode connected) and current source lo                                                   | -           | • 1            | -                   |  |  |
| Miller Effe   | ect, Association of poles with Nodes, H                                                  | igh freque  | ncy model of   | f Common-Source,    |  |  |
| Source-foll   | Source-follower, Common-Gate Stage, Cascade and Differential pair. CMOS Operational      |             |                |                     |  |  |
| Amplifiers    | : Performance parameters , One-stage                                                     | op amp, Tv  | wo-stage op-   | amp. Comparators:   |  |  |
| Characteriz   | Characterization of a comparator, Static and Dynamic Characteristics, Non-ideal effects, |             |                |                     |  |  |
| Two-stage     | open loop comparator gain. Switched C                                                    | Capacitor C | ircuits: MOS   | SFETs as Switches,  |  |  |
| Performance   | ce parameters (Speed, Precision, Chann                                                   | nel Charge  | Injection). S  | Switched Capacitor  |  |  |

Amplifiers: Unity- Gain Sampler/ Buffer, performance parameters (precision, speed, slewing), Switched capacitor non-inverting amplifier. Switched Capacitor Filter. Phase Locked Loop (PLL): Phase detector, Basics of VCO, Block diagram of PLL (Qualitative



Analysis only). Data Converters: Introduction and characterization of Digital-Analog Converters (DACs), Static Characteristics of DACs (Resolution, SNR, Integral nonlinearity (INL), Differential nonlinearity (DNL), Dynamic Characteristics of DACs (conversion speed). Introduction to Analog to Digital Convert (ADC), Static and Dynamic characteristics of ADC, Pipelined Algorithmic ADC, Architecture of Flash ADC.

- Baker, R.J., Li, H.W. and Boyce, D.E., CMOS: Circuit Design, Layout and Simulation, IEEE Press (2007) 2nd edition
- Gregorian, R. and Temes, G.C., Analog MOS Integrated Circuits for Signal Processing, Wiley (2002)
- Gregorian, R., Introduction to CMOS Op-Amps and Comparators, Wiley (1999)
- Jespers, P.G. A., Integrated Converters: D-A and A-D Architectures, Analysis and Simulation, Oxford University Press (2001)

| Course                                                                         | Course Name                                                                              | L-T-P        | Credits        | Pre-        |  |
|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------|----------------|-------------|--|
| Code                                                                           |                                                                                          |              |                | requisite   |  |
| EC226                                                                          | Optical Communication systems                                                            | 4-0-0        | 4              | NIL         |  |
| Course Ou                                                                      | tcomes (CO)**:                                                                           |              | •              | 1           |  |
| CO1:                                                                           | <b>CO1:</b> Understand the fundamentals, advantages and advances in optical              |              |                |             |  |
|                                                                                | communication system                                                                     |              |                |             |  |
| CO2:                                                                           | Acquire a detailed understanding of types, b                                             | asic proper  | ties and trans | mission     |  |
|                                                                                | characteristics of optical fibers                                                        |              |                |             |  |
| CO3:                                                                           | Understand configuration and architecture or                                             | f advanced   | optical comm   | nunication, |  |
|                                                                                | advanced system techniques and nonlinear o                                               | ptical effec | ts and their a | pplications |  |
| CO4:                                                                           | Gain the knowledge of working and analysis                                               | s of optical | amplifiers an  | ıd          |  |
|                                                                                | important devices/components of the optical                                              | communic     | ations systen  | n           |  |
| *The mappi                                                                     | ing of CO/PO attainment/Graduate Attributes                                              | are at Appe  | endix-A        |             |  |
| Introduction                                                                   | n: Historical development, optical power                                                 | basics, n    | eed of opt     | ical power  |  |
| communica                                                                      | tions, General system of optical commun                                                  | nication sy  | stem, Adva     | ntages and  |  |
|                                                                                | of optical fiber communication. Basics of tran                                           |              |                |             |  |
| -                                                                              | ny theory, Light propagation in optical fiber: T                                         |              |                | -           |  |
| 0                                                                              | nerical aperture, skew rays, optical fibers st                                           |              | -              |             |  |
|                                                                                | , propagation mode. Fiber characteristics:                                               |              |                |             |  |
| -                                                                              | linear scattering losses, nonlinear scattering                                           |              |                | -           |  |
|                                                                                | and intra modal dispersion. Optical sour                                                 | e            | U              |             |  |
|                                                                                | LED characteristics, Basic concepts of la                                                | -            | -              |             |  |
| _                                                                              | opulation inversion, types of lasers Optical                                             | -            |                | _           |  |
| -                                                                              | traveling wave amplifier (TWA), Gain of                                                  |              |                | -           |  |
| -                                                                              | ifier (EDFA's), Gain and Noise in EDFA.                                                  | -            | -              |             |  |
| photo detector, semiconductor photo detectors, Absorption, quantum efficiency, |                                                                                          |              |                |             |  |
| ·                                                                              | responsivity, receiver noise and receiver sensitivity. Wavelength division multiplexing: |              |                |             |  |
| -                                                                              | wavelength division multiplexing, Add and                                                | Drop mult    | iplexer, requ  | irements of |  |
| Transmitter                                                                    | and Receiver in WDM.                                                                     |              |                |             |  |

#### **Recommended Books:**

- Optical Fiber Communications by John M Senior; Pearson Education, Third Edition.
- Fiber-Optics Communications Technology by Djafar K. Mynbaev& Lowell L. Scheiner Prentice Hall, 2006.
- Fiber Optics and Optoelctronics by R.P. Khare, Oxford publication, First edition.

| Course                                                                              | Course Name                                | L-T-P        | Credits       | Pre-requisite     |  |
|-------------------------------------------------------------------------------------|--------------------------------------------|--------------|---------------|-------------------|--|
| Code                                                                                |                                            |              |               |                   |  |
| EC230                                                                               | Python for Data Science                    | 0-0-8        | 4             | Application       |  |
|                                                                                     |                                            |              |               | Development       |  |
|                                                                                     |                                            |              |               | using Python      |  |
| Course Ou                                                                           | itcomes (CO)**:                            |              |               |                   |  |
| CO1:                                                                                | After the completion of this course, stu   | dents will a | ble to use th | ne most widely    |  |
|                                                                                     | used Python packages; including Numl       | Py, Pandas   | and Matplot   | lib               |  |
| CO2:                                                                                | Students will practically implement Py     | thon packag  | ges to Data   | Analysis and      |  |
|                                                                                     | Data Visualization projects                |              |               |                   |  |
| CO3:                                                                                | They will able to manipulate and transf    | form data u  | sing the Pan  | das library in    |  |
|                                                                                     | Python                                     |              |               |                   |  |
| CO4:                                                                                | Students will learn and understand the     | versatile fe | atures of Py  | thon and          |  |
|                                                                                     | implementing its various libraries and p   | packages fo  | r solving pr  | oblems related    |  |
|                                                                                     | to diverse fields.                         |              |               |                   |  |
| CO5:                                                                                | Use the techniques, skills, and modern     | engineering  | g resources a | and tools         |  |
|                                                                                     | necessary for engineering practice.        |              |               |                   |  |
| *The mapp                                                                           | ing of CO/PO attainment/Graduate Attri     | butes are at | Appendix-     | 4                 |  |
| Introductio                                                                         | n and installation: Installation of Jup    | iter Notebo  | ook and pa    | ckages, Python    |  |
| Basics, Py                                                                          | thon Lists, Function & Packages, Librar    | ries and Co  | ntrol State   | ments: NumPy,     |  |
| Matplotlib                                                                          | Dictionaries &PandasLogic, Control         | Flow an      | d Filtering   | , Loops, Data     |  |
| Preparation                                                                         | : Introduction to flat files, Importing da | ta from oth  | er file types | , Working with    |  |
| relational                                                                          | databases in Python, Importing data fr     | om the In    | ternet, Data  | Ingestion and     |  |
| Extraction:                                                                         | Exploring your data, Tidying data for a    | analysis, C  | ombining da   | ata for analysis, |  |
| Cleaning data for analysis, Data ingestion & inspection, Exploratory data analysis, |                                            |              |               |                   |  |
| Extracting                                                                          | and transforming data, Rearrangen          | nent of d    | ata: Advar    | nced indexing,    |  |
| Rearranging and reshaping data, Grouping data, Concatenating data, Merging data.    |                                            |              |               |                   |  |
| Suggested                                                                           | Books                                      |              |               |                   |  |
| • Ma                                                                                | stering Python Data Analysis, PACK         | T Publicat   | ions By M     | agnus Vilhelm     |  |

- Mastering Python Data Analysis, PACKT Publications By Magnus Vilhelm Persson, Luiz Felipe Martins.
- Learning to program with python, Richard L. Halterman.

| Course<br>Code | Course Name                 | L-T-P | Credits | Pre-<br>requisite |
|----------------|-----------------------------|-------|---------|-------------------|
| EC233          | Speech and Audio Processing | 4-0-0 | 4       | Digital<br>Signal |

|                                                                                         |                                                        |           |              | Processing     |  |
|-----------------------------------------------------------------------------------------|--------------------------------------------------------|-----------|--------------|----------------|--|
| Course Ou                                                                               | itcomes (CO)**:                                        |           |              |                |  |
| CO1:                                                                                    | To acquire knowledge of audio and speech sig           | nals.     |              |                |  |
| CO2:                                                                                    | To develop understanding of speech generation          | and rec   | ognition mo  | odels.         |  |
| CO3:                                                                                    | To relate human physiology and anatomy with            | signal p  | rocessing pa | aradigms.      |  |
| *The mappi                                                                              | ing of CO/PO attainment/Graduate Attributes are        | e at Appo | endix-A      |                |  |
| Introduction                                                                            | n- Speech production and modeling - Human Au           | ditory S  | ystem; Gen   | eral structure |  |
| of speech c                                                                             | coders; Classification of speech coding techniqu       | ues – pa  | rametric, w  | aveform and    |  |
| hybrid; Rec                                                                             | quirements of speech codecs -quality, coding de        | elays, ro | bustness. S  | peech Signal   |  |
| Processing-                                                                             | · Pitch-period estimation, all-pole and all-zero file  | ters, con | volution; Po | ower spectral  |  |
| density, per                                                                            | riodogram, autoregressive model, autocorrelation       | estimat   | ion. Linear  | Prediction of  |  |
| Speech- Ba                                                                              | asic concepts of linear prediction; Linear Prediction  | ction Ar  | nalysis of n | on-stationary  |  |
| signals -pre                                                                            | ediction gain, examples; Levinson-Durbin algor         | ithm; Lo  | ong term ar  | nd short-term  |  |
| linear prec                                                                             | diction models; Moving average prediction.             | Speecl    | n Quantiza   | tion- Scalar   |  |
| -                                                                                       | n–uniform quantizer, optimum quantizer, logarithi      | -         | -            | -              |  |
|                                                                                         | quantizers; Vector quantization - distortion meas      |           | •            |                |  |
|                                                                                         | ar Quantization of LPC- Spectral distortion m          |           |              |                |  |
|                                                                                         | coefficient and log area ratio, bit allocation; Line s | -         |              |                |  |
|                                                                                         | s, quantization based on LSF. Linear Prediction        | U         |              | -              |  |
| -                                                                                       | Structures of LPC encoders and decoders; Voic          | -         |              |                |  |
| LPC model. Code Excited Linear Prediction-CELP speech production model; Analysis-by-    |                                                        |           |              |                |  |
| synthesis; Generic CELP encoders and decoders; Excitation codebook search - state-save  |                                                        |           |              |                |  |
| method, zero-input zerostate method; CELP based on adaptive codebook, Adaptive Codebook |                                                        |           |              |                |  |
|                                                                                         | w Delay CELP and algebraic CELP. Speech Co             | oding St  | andards-An   | overview of    |  |
| ITU-T G.72                                                                              | 26, G.728 and G.729 standards.                         |           |              |                |  |

- "Digital Speech" by A.M. Kondoz, Second Edition (Wiley Students Edition), 2004.
- "Speech Coding Algorithms: Foundation and Evolution of Standardized Coders", W.C. Chu, Wiley Inter science, 2003.

| Course    | Course Name                                                                        | L-T-P       | Credits        | Pre-requisite    |  |
|-----------|------------------------------------------------------------------------------------|-------------|----------------|------------------|--|
| Code      |                                                                                    |             |                |                  |  |
| EC234     | VLSI Design and Verification                                                       | 3-1-0       | 3              | Digital VLSI     |  |
|           |                                                                                    |             |                | Design           |  |
| Course Ou | tcomes (CO)**:                                                                     |             |                |                  |  |
| CO1:      | Students will be able to design and ver                                            | ify an Inte | grated circui  | t in VLSI field. |  |
| CO2:      | Students will learn to create test bench                                           | using the   | concept of p   | rocedural        |  |
|           | statements and routines                                                            |             |                |                  |  |
| CO3:      | Apply concepts of OOP and randomiz                                                 | ation in w  | riting test be | nch with system  |  |
|           | Verilog.                                                                           |             |                |                  |  |
| *The mapp | *The mapping of CO/PO attainment/Graduate Attributes are at Appendix-A             |             |                |                  |  |
| System Ve | System Verilog Data Types: Built-In Data Types, Fixed-Size Arrays, Dynamic Arrays, |             |                |                  |  |
| Queues, A | ssociative Arrays, Linked Lists, Arra                                              | y Method    | ls, choosing   | a Storage Type,  |  |



Creating User-Defined Structures, Type conversion, Enumerated Types, Constants, Strings, Expression Width. Procedural Statements, Tasks, Functions, and Void Functions, Task and Function Overview, Routine Arguments, Returning from a Routine, Local Data Storage, Time Values. System Verilog Assertions (SVA) – Introduction to SVA, Building blocks, Properties, Boolean expressions, Sequence, Single & Multiple Clock definitions, Implication operators (Overlapping & Non-overlapping), Repetition operators, Built-in System functions, Constructs, assertion directives, nested implication, formal arguments in property. BASIC OOP: Introduction, Your First Class, where to Define a Class, OOP Terminology, Creating New Objects, Object De allocation, Using Objects, Static Variables vs. Global Variables, Class Methods, Defining Methods Outside of the Class, Scoping Rules, Using One Class Inside Another, Understanding Dynamic Objects, Copying Objects. Randomization in System Verilog, Constraint Details, Controlling Multiple Constraint Blocks, Valid Constraints, Inline Constraints, the pre\_randomize and post\_randomize Functions, Random Number Functions, Constraints Tips and Techniques, Common Randomization Problems, Random Control, Random Number Generators, Random Device Configuration

SYSTEM VERILOG TEST BENCH: Design Blocks, Testbench Blocks, Alternate Tests. Suggested Books:

- SystemVerilog for design: a guide to using SystemVerilog for hardware design and modeling By Stuart Sutherland, Simon Davidmann, Peter Flake Edition: illustrated Published by Springer, 2004 ISBN 1402075308, 9781402075308
- System Verilog for Verification: A Guide to Learning the Test bench Language Features By Chris Spear Edition: 2, Published by Springer, 2008 ISBN 0387765298, 9780387765297
- System-on-a-Chip Verification: Methodology and Techniques by Prakash Rashinkar, Peter Paterson, Leena Singh and Published by Kluwer Academic Publishers 2004, New York, ISBN-0-306-46995-2.
- Practical guide for System Verilog Assertions By Srikanth А Published Vijayaraghavan&Meyyappan Ramanathan Edition: illustrated by Springer, 2005 ISBN 0387260498, 9780387260495

| Course    | Course Name                                                         | L-T-P       | Credits      | Pre-requisite        |  |  |
|-----------|---------------------------------------------------------------------|-------------|--------------|----------------------|--|--|
| Code      |                                                                     |             |              |                      |  |  |
| EC235     | VLSI Design and Verification                                        | 0-0-2       | 1            | Digital VLSI         |  |  |
|           | Lab                                                                 |             |              | Design               |  |  |
| Course Ou | itcomes (CO)**:                                                     |             |              |                      |  |  |
| CO1:      | Students will get practical experience                              | of writing  | g test bench | for digital circuits |  |  |
|           | in system Verilog.                                                  |             |              |                      |  |  |
| CO2:      | Students will get skills of writing test                            | bench usi   | ng procedur  | al statements,       |  |  |
|           | routines and OOP to verify a VLSI ch                                | ip.         |              |                      |  |  |
| CO3:      | Design test bench blocks by applying randomization method using EDA |             |              |                      |  |  |
|           | tools.                                                              |             |              |                      |  |  |
| *The mapp | ing of CO/PO attainment/Graduate Att                                | ributes are | e at Appendi | ix-A                 |  |  |



Introduction of various types of commands in system Verilog, programming of digital circuits using system Verilog, declaration of arrays, functions, queues, implement FIFO using queue, implementing stacks using queue, function to print Fibonacci series, function to print factorial of a number, class definition, initialization, randomization using OOP, creating objects, designing test benches in system Verilog, experiment on randomization.

- System Verilog for design: a guide to using System Verilog for hardware design • and modeling By Stuart Sutherland, Simon Davidmann, Peter Flake Edition: illustrated Published by Springer, 2004 ISBN 1402075308, 9781402075308
- System Verilog for Verification: A Guide to Learning the Test bench Language Features By Chris Spear Edition: 2, Published by Springer, 2008 ISBN 0387765298, 9780387765297
- System-on-a-Chip Verification: Methodology and Techniques by Prakash Rashinkar, Peter Paterson, Leena Singh and Published by Kluwer Academic Publishers 2004, New York, ISBN-0-306-46995-2.
- for А Practical guide System Verilog Assertions By Srikanth Vijayaraghavan&Meyyappan Ramanathan Edition: illustrated Published by Springer, 2005 ISBN 0387260498, 9780387260495

| Course                                                                               | Course Name                                                                          | L-T-P         | Credits      | Pre-           |  |
|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------|--------------|----------------|--|
| Code                                                                                 |                                                                                      |               |              | requisite      |  |
| EC236                                                                                | Wearable technology and reality                                                      | (4-0-0)       | 4            | NIL            |  |
| <b>Course Outc</b>                                                                   | omes (CO)*:                                                                          |               |              |                |  |
| CO1:                                                                                 | To identify products where smart textiles                                            | can be app    | lied.        |                |  |
| <b>CO2:</b>                                                                          | To identify different mechanisms for energy                                          | rgy harvest   | ing and tra  | nsmission      |  |
| CO3:                                                                                 | To outline the human body applications d                                             | lesigned us   | ing weara    | ble sensors.   |  |
| *The mapping                                                                         | g of CO/PO attainment/Graduate Attributes                                            | s are at App  | pendix-A     |                |  |
| Wearables: W                                                                         | Vorld of wearables, Attributes of Wearab                                             | les, Textile  | es and Clo   | thing: Meta-   |  |
| Wearable, Ch                                                                         | allenges and Opportunities, The Future                                               | of Wearab     | oles, Wear   | able Haptics   |  |
| Introduction,                                                                        | The Need for Wearable Haptic Devices, C                                              | Categories of | of Wearabl   | e Haptic and   |  |
| Tactile Disp                                                                         | lay. Wearable Electronics Sensors: In                                                | ntroduction   | , Need,      | Sensors for    |  |
| Physiological                                                                        | Parameters Monitoring, types of activitie                                            | es, wireless  | s technolog  | gies, Current  |  |
| Status and Fu                                                                        | ture Opportunities, Wearable Bio and Ch                                              | emical Sen    | sors, Wea    | rable Inertial |  |
| Sensors and                                                                          | their Applications, Application of Optic                                             | al Heart R    | Rate Monit   | toring, Body   |  |
| Worn Heat Fl                                                                         | ow Sensors, Body Sensor Networks (BSN                                                | ). Knitted H  | Electronic ' | Textiles: The  |  |
| Interlaced Ne                                                                        | twork, Textile Sensors for Physiological                                             | State Mon     | itoring, Bi  | omechanical    |  |
| Sensing, Nor                                                                         | n-Invasive Sweat Monitoring by Texti                                                 | le Sensors    | s, Smart     | Fabrics and    |  |
| Interactive Te                                                                       | extile Platforms for Remote Monitoring, S                                            | ystem for     | Remote R     | ehabilitation, |  |
| Systems for H                                                                        | Systems for Emotional State Assessment. Energy harvesting from foot motion, wireless |               |              |                |  |
| energy Transmission, RFID Technology. Wireless Body Area Network: Introduction,      |                                                                                      |               |              |                |  |
| Evaluation Matrix, Technologies, Wearable Radios, Wearable Sensors for Physiological |                                                                                      |               |              |                |  |
| -                                                                                    | rement, wearable sensor inside and outs                                              | ide of the    | human bo     | ody for early  |  |
| detection if di                                                                      | sease.                                                                               |               |              |                |  |

#### Suggested books:

- "Wearable Sensors" Fundamentals, Implementation and Applications, Edited by Edward Sazonov and Michael R. Neuman.
- "Wearable Electronics Sensors for Safe and Healthy Living" Edited by Subhas Chandra Mukhopadhyay.

| Course<br>Code                                                                                 | Course Name                                                                      | L-T-P        | Credits    | Pre-<br>requisite |
|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------|------------|-------------------|
| EC237                                                                                          | Sensor & Communication Protocol                                                  | (0-0-8)      | 4          | NIL               |
| Course Outo                                                                                    | comes (CO)*:                                                                     |              |            |                   |
| CO1:                                                                                           | Understand fundamental concepts of sense                                         | sor technolo | ogy.       |                   |
| CO2:                                                                                           | Understand networking techniques for data communication in IoT enabled           |              |            |                   |
|                                                                                                | devices and system.                                                              |              |            |                   |
| CO3:                                                                                           | Comprehend different communication                                               | on techno    | ologies fo | or efficient      |
|                                                                                                | connectivity in IoT devices.                                                     |              |            |                   |
| *The mappin                                                                                    | g of CO/PO attainment/Graduate Attribute                                         | s are at Ap  | pendix-A   |                   |
| Measurement Terminology: Input and output, range, accuracy, precision, resolution,             |                                                                                  |              |            |                   |
| sensitivity, linearity, repeatability, reproducibility, calibration and traceability, Testing, |                                                                                  |              |            |                   |
| quality assur                                                                                  | rance and safety. Transducers and Se                                             | nsors: Ser   | isors and  | transducers:      |
| Tommonotumo                                                                                    | Tampantum senses nativities concerns constitues concerns alextenatories concerns |              |            |                   |

Temperature sensors, resistive sensors, capacitive sensors, electrostatic sensors, piezoelectric sensors, ultrasonic sensors, RFID, radiological sensors and MEMS. Optical sensing techniques: Common electromagnetic sensors, IR sensors, passive IR sensors, photo-resistive sensors, photovoltaic sensors, photodiodes, photoelectric detectors, solid state lasers, CCD and CMOS sensors. Smart Sensors: Primary Sensors, Excitation, Amplification, Filters, Converters, Compensation, Information Coding/Processing, Data Communication, Standards for Smart Sensor Interface, The Automation Sensors Applications: On-board Automobile Sensors (Automotive Sensors), Home Appliance Sensors, Aerospace Sensors, Sensors for Manufacturing, Sensors for environmental Monitoring. Network and Communication Protocols: Rules of communication, Network protocols and standards- Role of standard organizations OSI and TCP/IP model, data transfer in the network. Physical Layer: Physical layer protocols, network media- guided and unguided. Data Link Layer: Ethernet: Ethernet protocols, Ethernet MAC address, LAN switches- working, switch forwarding methods, Network layer: network layer protocols i.e. IPv4 and IPv6, IP addressing: IPv4 Network Addresses- structure and characteristics, IPv6 network addresses. Transport Layer: transport layer protocols-TCP and UDP. Application Layer: Introduction, application layer protocols, HTTP, HTTPS, email, SMTP, DNS, DHCP. Communication Technologies: Bluetooth Low Energy, Zigbee, Z-wave, WiFi, LoRaWAN, 6LoWPAN, Near Field Communication (NFC). **Suggested Books:** 

- 'Sensors and Transducers' by D. Patranabis, PHI Learning Private Limited.
- 'Introduction to Data Communications and Networking' by B. Forouzan, Tata McGraw Hill, Fourth Edition, 2004.
- 'Introduction to Networks Companion Guide', by Cisco Networking Academy.



| Course<br>Code          | Course Name                                                                                                                                | L-T-P                                                                                                            | Credits | Pre-<br>requisite |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------|-------------------|
| EC239                   | Advance Wireless Communication                                                                                                             | 0-0-8                                                                                                            | 4       | NIL               |
| Course Outcomes (CO)**: |                                                                                                                                            |                                                                                                                  |         |                   |
| CO1:                    | The students would be able to demonstrate knowledge and understanding on existing digital cellular systems and standards across the world. |                                                                                                                  |         |                   |
| CO2:                    | The students would have an ability to reconnetworks and evolve its architecture.                                                           | The students would have an ability to recognize the need of 3G/4G cellular networks and evolve its architecture. |         |                   |
| CO3:                    | The students would possess the capability for evolving technological path for higher user performance in cell phone technology             |                                                                                                                  |         |                   |
| *The mapp               | ing of CO/PO attainment/Graduate Attribut                                                                                                  | es are at Appe                                                                                                   | endix-A |                   |
|                         |                                                                                                                                            |                                                                                                                  |         | D (GI             |

Architecture of 2G, Function of MSC, Functions of HLR and VLR, formats for IMSI and MSISDN, Authentication Centre functions, how to make calls 2.5 G Architecture and functions, SGSN, 3G Architecture and functions, 2.5 G TDMA, GPRS Technology, WCS and WPS Connectivity diagram, Call flows, EDGE Technology.

## Suggested books:

- 'Analog and Digital Communications' by T. L. Singal, ISBN: 978-0-07-107269-4, McGraw Hill Education Publications, First Edition Copyright @ 2012, Fifth Reprint 2015.
- 'Electronic Communications' by T. L. Singal, ISBN: 978-93-82782-16-2, Chitkara University Publications, First edition Copyright @ 2014.
- 'Modern Digital and Analog Communication Systems' by B. P. Lathi and Zhi Ding, Oxford University Press, International 4th Edition Copyright @ 2010

| Course                 | Course Name                                                                                   | L-T-P        | Credits    | Pre-requisite    |
|------------------------|-----------------------------------------------------------------------------------------------|--------------|------------|------------------|
| Code                   |                                                                                               |              |            |                  |
| EC241                  | Cloud computing for IoT                                                                       | 4-0-0        | 4          | NIL              |
| Course Outcomes (CO)*: |                                                                                               |              |            |                  |
| CO1:                   | Deploy the sensor and user data in                                                            | the Cloud    | d for dif  | ferent types of  |
|                        | applications.                                                                                 |              |            |                  |
| CO2:                   | To apply the analytics in the Cloud to extract information.                                   |              |            |                  |
| CO3:                   | To interpret the security protocols used in                                                   | IoT applic   | ation deve | elopment.        |
| *The mappin            | g of CO/PO attainment/Graduate Attributes                                                     | s are at App | pendix-A   |                  |
| Cloud compu            | iting models and services, Creation of vir                                                    | tual machi   | ne and do  | cker containers, |
| cloud archite          | cloud architectures and resource management, Mobile cloud and inter-cloud mashup              |              |            |                  |
| services. Case         | services. Case studies on Building predictive analytics for IoT. Introducing Machine learning |              |            |                  |
| services, mal          | services, making your sensor speak, making image and video analysis, build a simple           |              |            |                  |
| predictive an          | predictive analytics for your IoT project, Introducing IoT security, understanding IoT risks, |              |            |                  |

#### Suggested Books:

- Learning AWS IoT, by Agus Kurniawan, Packt publishing, 2018
- Big Data Analytics for cloud, IoT and Cognitive Learning, by Kai Hwang and Min Chen, Wiely publishers, 2017.

secure communication between IoT cloud and IoT device, authentication and authorization.



| Course<br>Code                                                         | Course Name                                                                   | L-T-P                                                               | Credits        | Pre-<br>requisite |  |  |  |
|------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------|----------------|-------------------|--|--|--|
| EC242                                                                  | Nano-Electronics                                                              | 4-0-0                                                               | 4              | Analog            |  |  |  |
|                                                                        |                                                                               |                                                                     |                | Electronics       |  |  |  |
| Course Outcomes (CO)**:                                                |                                                                               |                                                                     |                |                   |  |  |  |
| CO1:                                                                   | The students would possess an ability to apply the in-depth knowledge of      |                                                                     |                |                   |  |  |  |
|                                                                        | electronic device fabrication techniques                                      |                                                                     |                |                   |  |  |  |
| CO2:                                                                   | The students would be able to demonstr                                        | ate technical                                                       | l skills to ad | opt academic      |  |  |  |
|                                                                        | and research-oriented career.                                                 |                                                                     |                |                   |  |  |  |
| CO3:                                                                   | The students would possess an ability to                                      | o Interact sci                                                      | entifically w  | vith              |  |  |  |
|                                                                        | researchers in R&D deptt of semicondu                                         | researchers in R&D deptt of semiconductor industry for professional |                |                   |  |  |  |
|                                                                        | development                                                                   |                                                                     |                |                   |  |  |  |
| *The mapping of CO/PO attainment/Graduate Attributes are at Appendix-A |                                                                               |                                                                     |                |                   |  |  |  |
| Introductio                                                            | Introduction to nanotechnology, MESO structures, Basics of Quantum Mechanics: |                                                                     |                |                   |  |  |  |

Introduction to nanotechnology, MESO structures, Basics of Quantum Mechanics: Schrodinger equation, Density of States. Particle in a box Concepts, Degeneracy. Band Theory of Solids. Kronig-Penny Model. Brillouin Zones. Shrink-down approaches: Introduction, CMOS Scaling, The nanoscale MOSFET, Finfets, Vertical MOSFETs, limits to scaling, system integration limits (interconnect issues etc.), Resonant Tunnelling Diode, Coulomb dots, Quantum blockade, Single electron transistors, Carbon nanotube electronics, Band structure and transport, devices, applications, 2D semiconductors and electronic devices, Graphene, atomistic simulation.

- G.W. Hanson, Fundamentals of Nano-electronics, Pearson, 2009.
- W. Ranier, Nanoelectronics and Information Technology (Advanced Electronic Material and Novel Devices), Wiley-VCH, 2003.
- K.E. Drexler, Nanosystems, Wiley, 1992.
- J.H. Davies, The Physics of Low-Dimensional Semiconductors, Cambridge University Press, 1998.
- C.P. Poole, F. J. Owens, Introduction to Nanotechnology, Wiley, 2003.

| Course                                                                                   | Course Name                                                         | L-T-P        | Credits        | Pre-       |
|------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--------------|----------------|------------|
| Code                                                                                     |                                                                     |              |                | requisite  |
| EC243                                                                                    | Wireless Sensor Networks                                            | 4-0-0        | 4              | NIL        |
| Course Outcomes (CO)**:                                                                  |                                                                     |              |                |            |
| CO1:                                                                                     | The students would be able to formulate net                         | work archit  | ecture and op  | perating   |
|                                                                                          | environment                                                         |              |                |            |
| CO2:                                                                                     | They would possess an ability to design solu                        | utions for w | ireless transn | nission    |
|                                                                                          | technology and protocols                                            |              |                |            |
| CO3:                                                                                     | The students would possess in-depth knowle                          | edge about o | optimization   | techniques |
|                                                                                          | for efficient operation in modern applications including healthcare |              |                |            |
| *The mapping of CO/PO attainment/Graduate Attributes are at Appendix-A                   |                                                                     |              |                |            |
| Introduction & Applications of Wireless Sensor Networks: Introduction, basic Overview of |                                                                     |              |                |            |
| the Techno                                                                               | logy, Applications of Wireless Sensor Ne                            | tworks. Ar   | chitecture: S  | ingle node |

architecture, Hardware components, Sensor Node Technology, Sensor Taxonomy, WN operating environment, WN Trends, Network architecture, sensor network scenarios, optimization goals and figures of merit, Gateway concepts. Networking Sensors: Physical layer, Wireless channel and communication fundamentals, frequency allocation, modulation and demodulation, wave propagation effects and noise, Wireless Transmission Technology and Systems, Radio technology primer, available wireless technologies, Medium Access Control Protocols for Wireless Sensor Networks, Fundamentals of MAC protocols, MAC protocols for WSNs, Sensor MAC case study, IEEE 802.15.4 LR-WPANs Standard Case Study, Naming & Addressing, Fundamentals, Address and name management in wireless sensor networks, assignment of MAC addresses, Routing protocols for Wireless Sensor Networks, routing challenges and design issues in wireless sensor networks, Routing strategies in wireless sensor networks, Flooding and its variants, Sensor protocols for information via negotiation, low energy adaptive clustering hierarchy, Power efficient gathering in sensor information systems, directed diffusion, Geographical routing. Infrastructure Establishment: Introduction to time synchronization problem, Properties of localization and positioning, possible approaches, Topology control, controlling topology in flat networks-power control, Hierarchical networks by dominating sets, Hierarchical networks by clustering. Operating System for WSN: Operating system design issues, examples of operating systems, Node level software platform, node level simulators, State centric programming.

- Wireless Sensor networks: Technology, Protocols & Applications' by KazemSohraby, Daniel Minoli, TaiebZnati, Wiley India Pvt Ltd.
- 'Protocols & Architectures for Wireless Sensor Networks' by Holger Karl & Andreas Willig, John Wiley,2005

| Course                                                                                | Course Name                                                                                | L-T-P        | Credits       | Pre-requisite        |  |  |
|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------|---------------|----------------------|--|--|
| Code                                                                                  |                                                                                            |              |               |                      |  |  |
| EC244                                                                                 | IC fabrication and Technology                                                              | 4-0-0        | 4             | Microelectronics     |  |  |
| Course Ou                                                                             | itcomes (CO)**:                                                                            |              |               |                      |  |  |
| <b>CO1:</b> Understand the fabrication technology of IC Technology.                   |                                                                                            |              |               |                      |  |  |
| CO2:                                                                                  | CO2: To understand and analyze operation of MOS Transistor.                                |              |               |                      |  |  |
| CO3:                                                                                  | To learn the basic MOS technology to design physical process of VLSI Design                |              |               |                      |  |  |
|                                                                                       | flow.                                                                                      |              |               |                      |  |  |
| *The mapp                                                                             | ing of CO/PO attainment/Graduate Attr                                                      | ibutes are a | at Appendix   | -A                   |  |  |
| Semicondu                                                                             | ctor Materials, Crystal Structure, Energ                                                   | y Bands,     | Carrier Con   | centrations, Carrier |  |  |
| Transport                                                                             | Phenomena, Continuity Equation, Th                                                         | ermionic     | Emission I    | Process, Tunneling   |  |  |
| Process, H                                                                            | igh Field Effects. Electron grade silic                                                    | con. Cryst   | al growth.    | Wafer preparation.   |  |  |
| Vapor phas                                                                            | se and molecular beam epitaxy. SOI. Ep                                                     | pitaxial ev  | aluation. Ox  | idation techniques,  |  |  |
| systems an                                                                            | d properties. Oxidation defects. Optic                                                     | al, electro  | on, X-ray a   | nd ion lithography   |  |  |
| methods. P                                                                            | methods. Plasma properties, size, control, etch mechanism, etch techniques and equipments. |              |               |                      |  |  |
| Deposition process and methods. Diffusion in solids. Diffusion equation and diffusion |                                                                                            |              |               |                      |  |  |
| mechanism                                                                             | s. Ion implantation and metallization. P                                                   | rocess sin   | nulation of i | on implementation,   |  |  |

diffusion, oxidation, epitaxy, lithography, etching and deposition. NMOS, CMOS, MOS memory and bipolar IC technologies. IC fabrication. Analytical and assembly techniques. Packaging of VLSI devices.

## Suggested Books:

- S.M.Sze, "VLSI Technology (2nd edition)", McGraw Hill, 1988
- S. M. Sze, Semiconductor Devices Physics and Technology, 2nd Edition, Wiley, 2010
- Donald A. Neamen 'Semiconductor Physics and Devices' McGraw-Hill.

| Course                                                                             | Course Name                                                                               | L-T-P                                                                                                           | Credits       | Pre-         |  |
|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------|--------------|--|
| Code                                                                               |                                                                                           |                                                                                                                 |               | requisite    |  |
| EC262                                                                              | Machine Learning                                                                          | 3-1-0                                                                                                           | 4             | NIL          |  |
| Course Ou                                                                          | tcomes (CO)**:                                                                            |                                                                                                                 |               |              |  |
| CO1:                                                                               | <b>CO1:</b> Understand and implement classical models and algorithms in machine           |                                                                                                                 |               |              |  |
|                                                                                    | learning as well as python programming con                                                | cepts                                                                                                           |               |              |  |
| CO2:                                                                               | Analyze the data, identify the problems                                                   |                                                                                                                 |               |              |  |
| CO3:                                                                               | Choose the relevant models and algorithms to turn available data into valuable            |                                                                                                                 |               |              |  |
|                                                                                    | and useful Information                                                                    |                                                                                                                 |               |              |  |
| CO4:                                                                               | Expose students to new techniques and ideas                                               | s that can be                                                                                                   | e used to imp | prove the    |  |
|                                                                                    | effectiveness of current AI tools                                                         |                                                                                                                 |               |              |  |
| *The mappi                                                                         | ing of CO/PO attainment/Graduate Attributes                                               | are at Appe                                                                                                     | endix-A       |              |  |
| Introduction                                                                       | n to machine learning: Introduction and His                                               | story of M                                                                                                      | achine Lear   | ning. Basic  |  |
| Concepts of                                                                        | f Machine Learning, Examples of Machine                                                   | learning ap                                                                                                     | plication, ho | w artificial |  |
| Intelligence                                                                       | relates to Machine Learning, Machine Learning                                             | ning Conce                                                                                                      | pts, Differen | it phases of |  |
| prediction r                                                                       | nodeling. Supervised Learning: Learning class                                             | s from examination of the second s | mples, learni | ng multiple  |  |
| classes Non                                                                        | -parametric Methods: k-Nearest Neighbors (                                                | KNN), Intr                                                                                                      | oduction and  | l building a |  |
| Decision Tree. Representing disjunctive concepts as trees and rules, Random Forest |                                                                                           |                                                                                                                 |               |              |  |
|                                                                                    | Discriminative Learning models: Support Vector Machine (SVM) and its Kernels,             |                                                                                                                 |               |              |  |
| Unsupervise                                                                        | ed Learning: Introduction to clustering, Unsu                                             | pervised L                                                                                                      | earning: Intr | oduction to  |  |
| clustering,                                                                        | clustering, k-Means clustering algorithm and Hierarchical Clustering, Supervised learning |                                                                                                                 |               |              |  |

after clustering, Introduction to regression

Linear Regression and locally weighted or logistic, Regression. Reinforcement Learning: Introduction to Reinforcement Learning, Learning Task, Non-deterministic Rewards and actions with examples Evaluation Metrics: Introduction, Binary Classification, performance, Score based models and Point matrices.

- Alpaydin, Ethem., "Introduction to machine learning", second edition.
- Tom M. Mitchell., "Machine Learning", McGraw-Hill Science/Engineering/Math; ISBN: 0070428077.
- Peter Flach, Machine Learning: The Art and Science of Algorithms that make sense of Data, Cambridge University Press.
- Chris Bishop, Pattern Recognition and Machine Learning, Springer.

| Course                                                                                                                                                                           | Course Name                                                                          | L-T-P        | Credits       | Pre-         |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------|---------------|--------------|--|
| Code                                                                                                                                                                             |                                                                                      |              |               | requisite    |  |
| EC248                                                                                                                                                                            | Data Extraction and Visualization                                                    | 0-0-8        | 4             | NIL          |  |
| Course Out                                                                                                                                                                       | comes (CO)**:                                                                        |              |               |              |  |
| CO1:                                                                                                                                                                             | After the completion of this course students                                         | will posses  | ss knowledge  | regarding    |  |
|                                                                                                                                                                                  | general concepts of data mining along with basic methodologies and                   |              |               |              |  |
|                                                                                                                                                                                  | applications.                                                                        |              |               |              |  |
| CO2:                                                                                                                                                                             | Students will be able to understand how to a                                         | nalyze and   | display data  | using        |  |
|                                                                                                                                                                                  | Tableau.                                                                             |              |               |              |  |
| CO3:                                                                                                                                                                             | Students will be able to understand how the                                          | Level of De  | etail (LOD) e | xpressions   |  |
|                                                                                                                                                                                  | are used to run complex queries.                                                     |              |               |              |  |
| *The mappi                                                                                                                                                                       | ng of CO/PO attainment/Graduate Attributes                                           | are at Appe  | endix-A       |              |  |
| SQL MOD                                                                                                                                                                          | ULE:Introduction to SQL: Table Basics, T                                             | ypes of SQ   | L Language    | e, Selecting |  |
| Data, Selec                                                                                                                                                                      | t Clause, Group By, Having Clause, O                                                 | rder By, (   | Creating Ta   | bles, DDL    |  |
| Commands:                                                                                                                                                                        | Implementing DDL commands (CREATE, A                                                 | ALTER, D     | ROP, RENA     | ME), DML     |  |
| Commands:                                                                                                                                                                        | DML commands (DELETE, INSERT, SEI                                                    | LECT(Logic   | cal, Relation | al, like and |  |
|                                                                                                                                                                                  | UPDATE), Functions: Single-Row Func                                                  |              | -             |              |  |
| Implementin                                                                                                                                                                      | ng group functions (having, group by, order                                          | by), Data    | Manipulation  | n: Inserting |  |
|                                                                                                                                                                                  | Updating Records, Deleting Records, Mani                                             | -            | -             |              |  |
| -                                                                                                                                                                                | perators, In and Between, Mathematical Fu                                            |              |               |              |  |
|                                                                                                                                                                                  | Introducing Tableau 10.0, Purpose and Ad                                             | -            |               | •            |  |
|                                                                                                                                                                                  | ization, Download and Install Tableau, Ma                                            |              |               |              |  |
|                                                                                                                                                                                  | nily, Environment Setup, connecting to dat                                           |              | -             |              |  |
|                                                                                                                                                                                  | Cableau, Tableau Toolbars: Tableau Toolbar                                           |              | · •           |              |  |
|                                                                                                                                                                                  | and its security, Field Types: Dimensions an                                         |              |               |              |  |
| • 1                                                                                                                                                                              | bleau, creating your first report, Data Granula                                      | •            |               | • 1          |  |
|                                                                                                                                                                                  | and Measures, Blue and Green, Data Typ                                               |              |               |              |  |
| -                                                                                                                                                                                | Granularity using marks card, Graphical Vis                                          |              |               |              |  |
|                                                                                                                                                                                  | Joins and Union, Data blending, Managing N                                           |              |               |              |  |
|                                                                                                                                                                                  | ighlighters, Intro to graphs, Sorting, Filterin                                      | -            |               |              |  |
|                                                                                                                                                                                  | dimensions using groups, Sets, Conditional                                           |              | -             |              |  |
| Data Trends Prediction: Forecasting Clustering, Trend Lines, Reference Lines, Parameters,                                                                                        |                                                                                      |              |               |              |  |
| Built in functions in Tableau, Calculated Fields: Table Calculations, moving averages / running total / relative percentages, LOD Expressions: LOD (level of detail) expression, |                                                                                      |              |               |              |  |
| -                                                                                                                                                                                |                                                                                      |              |               | -            |  |
| -                                                                                                                                                                                | ueries involving multiple dimensions, adding                                         | -            |               | •            |  |
|                                                                                                                                                                                  | alue, Dashboard and Case Studies: Case stu<br>asphoard for devices. Background image | iules, creat | ing a uashoo  | aiu layoul,  |  |
| Suggested I                                                                                                                                                                      | ashboard for devices, Background image.                                              |              |               |              |  |

- Suggested Books
  - Tableau Your Data!: Fast and Easy Visual Analysis with Tableau Software.
  - Introduction to PL/SQL by Ivan Bayross, BPB Publication , Third Edition.



| Course                                                                             | Course Name                                                                  | L-T-P        | Credits    | Pre-          |  |
|------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------|------------|---------------|--|
| Code                                                                               |                                                                              |              |            | requisite     |  |
| EC249                                                                              | IoT Application Development                                                  | 0-0-8        | 4          | NIL           |  |
| Course Outcomes (CO)*:                                                             |                                                                              |              |            |               |  |
| CO1:                                                                               | Implement various application developm                                       | ent techniq  | ues used f | for designing |  |
|                                                                                    | IoT enabled devices.                                                         |              |            |               |  |
| CO2:                                                                               | Utilize Cloud based services for IoT devices                                 |              |            |               |  |
| CO3:                                                                               | <b>CO3:</b> Apply data analysis techniques for cloud computing applications. |              |            |               |  |
| *The mappin                                                                        | g of CO/PO attainment/Graduate Attributes                                    | s are at App | pendix-A   |               |  |
| Introduction                                                                       | to IoT, IoT platforms and design methodo                                     | ology, basic | building   | blocks of an  |  |
| IoT device,                                                                        | design methodology. IoT physical device                                      | es, exempl   | ary device | es like Node  |  |
| MCU, Raspb                                                                         | erry pi, STM32 etc. Interfacing and progr                                    | amming Io    | T device.  | IoT physical  |  |
| server and cloud offerings. Introduction to cloud storage models and communication |                                                                              |              |            |               |  |
| API's. WAMP server, designing a Restful web API, Amazon web services for IoT.      |                                                                              |              |            |               |  |
| Connecting I                                                                       | oT devices to AWS IoT platform. Optimation                                   | izing IoT o  | computing  | . Visualizing |  |

# AWS IoT data. Case studies on IoT applications using AWS. **Suggested Books:**

- Internet of Things: A Hands-on-approach, by ArshdeepBagha and Vijay Madisetti, Orient Blackswan publisher, 2015.
- Learning AWS IoT, by Agus Kurniawan, Packt publishing, 2018.

| Course             | Course Name                                                                    | L-T-P        | Credits      | Pre-           |  |
|--------------------|--------------------------------------------------------------------------------|--------------|--------------|----------------|--|
| Code               |                                                                                |              |              | requisite      |  |
| EC250              | Web Development for IoT                                                        | (0-0-8)      | 4            | NIL            |  |
| <b>Course Outc</b> | omes (CO)*:                                                                    |              |              |                |  |
| CO1:               | CO1: The student would be design dynamic web forms for acquiring and           |              |              |                |  |
|                    | processing the user and sensor data.                                           |              |              |                |  |
| CO2:               | The student would be able to interpret the                                     | ne IoT arc   | hitecture    | and building   |  |
|                    | blocks of various domains                                                      |              |              |                |  |
| CO3:               | To design Interactive forms using Java s                                       | cript with   | a focus or   | n Internet of  |  |
|                    | Things.                                                                        |              |              |                |  |
| *The mapping       | g of CO/PO attainment/Graduate Attributes a                                    | are at Apper | ndix-A       |                |  |
| A Complicate       | ed Ecosystem, Definitions and History, The                                     | Client-Serv  | ver Model    | , Working in   |  |
| Web Develop        | ment, Internet Protocols, Domain Name Sy                                       | stem, Unifo  | orm Resou    | rce Locators   |  |
| Hypertext Tra      | insfer Protocol, Web Browsers, Web Servers                                     | s. A Very B  | Brief Histor | ry of HTML,    |  |
| HTML Synta         | x, Semantic Markup, Structure of HTML D                                        | ocuments,    | Quick Tou    | ar of HTML,    |  |
| HTML5 Sema         | antic Structure Elements, Introduction to CS                                   | S, CSS Syn   | tax, Locati  | ion of Styles, |  |
| Selectors, The     | e Cascade: How Styles Interact, The Box                                        | Model, CSS   | S Text Sty   | ling. HTML     |  |
| Tables and F       | forms, Introducing Tables, Styling tables, I                                   | Introducing  | Forms, F     | orm Control    |  |
| Elements, Tal      | ble and Form Accessibility Micro formats,                                      | Digital Rep  | presentatio  | n of Images,   |  |
| Color Model        | Color Models, Image Concepts, File Formats, Audio and Video. JavaScript Design |              |              |                |  |
| Principles, W      | here Does JavaScript Go?, Variables and                                        | Data Typ     | es, JavaSo   | cript Output,  |  |
| Conditionals,      | Arrays, Objects, Functions, Object Prototyp                                    | pes, The De  | ocument C    | Object Model   |  |



(DOM), Modifying the DOM, Events, Event Types Forms, Extending JavaScript with jQuery, jQuery Foundations, Event Handling in jQuery, DOM Manipulation, Effects and Animations, AJAX, Asynchronous File Transmissions. What is a Server-Side Development? A Web Server's Responsibilities, Quick Tour PHP, Program Control, Functions, PHP Arrays and Superglobal, Arrays, \$\_GET and \$\_POST Superglobal Variables, \$\_SERVER Array, \$\_FILES Array, Reading/Writing Files, PHP Classes and Objects, Object-Oriented Overview, Classes and Objects in PHP, Object-Oriented Design. Databases and Web Development, SQL, NoSQL, Database APIs, managing an MYSQL Database, Accessing MySQL in PHP, Case Study Schemas, Sample Database Recipes, Web Application Design, Real-World Web Software Design, Principle of Layering, Software Design Patterns in the Web Context, Data and Domain Patterns, Presentation Patterns. **Suggested Books:** 

- Fundamentals of web development, Randy Connolly, Ricardo Hoar, Pearson publications
- 'Web Enabled Commercial Application Development Using HTML, JavaScript, DHTML and PHP' by IvanBayross, 4th Edition, BPB Publications.
- 'The Complete Reference HTML & XHTML' by Thomas Powell, 4th Edition, Tata McGraw-Hill Company Limited.

| Course                                                                                       | Course Name                                                                           | L-T-P         | Credits       | Pre-requisite     |  |
|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------|---------------|-------------------|--|
| Code                                                                                         |                                                                                       |               |               |                   |  |
| EC258                                                                                        | Core JAVA                                                                             | 0-0-8         | 4             | Object            |  |
|                                                                                              |                                                                                       |               |               | Oriented          |  |
|                                                                                              |                                                                                       |               |               | Programming       |  |
|                                                                                              |                                                                                       |               |               | using C++         |  |
| Course Ou                                                                                    | tcomes (CO)**:                                                                        |               |               |                   |  |
| <b>CO1:</b> Implement the concept of object-oriented techniques and methodologies using      |                                                                                       |               |               |                   |  |
|                                                                                              | Java                                                                                  |               |               |                   |  |
| <b>CO2:</b>                                                                                  | CO2: Use Exception Handling concepts for a Robust Application in Java.                |               |               |                   |  |
| CO3:                                                                                         | CO3: Demonstrate an understanding of Java Input and Output.                           |               |               |                   |  |
| CO4:                                                                                         | Develop applications using multithreadir                                              | ng concept    | of Java.      |                   |  |
| CO5:                                                                                         | Use and Implement several Data structur                                               | es using C    | ollection Fra | mework            |  |
| *The mapp                                                                                    | ing of CO/PO attainment/Graduate Attribu                                              | ites are at A | Appendix-A    |                   |  |
| Introduction                                                                                 | n to Object Oriented Programming: Ber                                                 | nefits and    | application   | of OOP, basic     |  |
| concepts ar                                                                                  | nd characteristics of OOP, abstraction, da                                            | ta hiding,    | static and d  | ynamic binding,   |  |
| encapsulati                                                                                  | on, inheritance and polymorphism, proce                                               | dural prog    | ramming vs    | object-oriented   |  |
| programmi                                                                                    | ng. Objects and Classes: Basics of objects                                            | ects and cl   | lasses, struc | ture of a class,  |  |
| definition o                                                                                 | f class members, member variable and me                                               | mber funct    | tion, role of | constructors and  |  |
| methods in                                                                                   | class, define an object. Introduction to Jav                                          | va: Java in   | troduction, h | nistory and goals |  |
| of Java, fu                                                                                  | of Java, fundamentals of Java, overview of JDK, JVM, garbage collection. Java Basics: |               |               |                   |  |
| identifiers, keywords, Java data types & operators. Control Statements: decision constructs, |                                                                                       |               |               |                   |  |
| using loop constructs, command line arguments. Working with Arrays: creating and using       |                                                                                       |               |               |                   |  |
| arrays (1-D                                                                                  | , 2-D and multi-dimensional arrays), jag                                              | ged arrays    | Access Co     | ntrol Modifiers:  |  |



access control, method overloading, constructors, constructor overloading, use of this and static. Inheritance: working with inheritance, inheritance basics & types, using super, method overriding, dynamic method dispatch, final keyword. Abstract Methods & Classes, Packages & Interfaces: built-in packages and user defined packages, interfaces: declaration, implementation, extending classes and interfaces. Strings, StringBuffer, StringBuilder & StringTokenizer: introduction, immutable string, methods of String class, StringBuffer class & StringBuilder class, toString method, StringTokenizer class. Exception Handling: exception handling fundamentals, exception types, try and catch, multiple catch clauses, nested try, throw, throws and finally, creating custom exception. Multithreading: Java thread model, main thread, creating thread by implementing runnable and extending thread class, creating multiple threads, using isAlive() and join(), thread priorities, synchronization. Generics: introduction, generic example, generic class, generic method, generic constructor and generic interfaces. Collections Framework: introduction, collection interfaces, list, queue, set (Overview), Collection classes, ArrayList, LinkedList, Iterator, working with maps (Overview), comparable & comparator, arrays, vector, stack. IO Streams: stream classes, byte streams, character streams, stream tokenizer. JDBC Connectivity: introduction, architecture, establishing JDBC database connection.

- Head First Java, O'Reilly Publication
- OCA Java SE 8 Programmer I Study Guide (Exam 1Z0-808) (Oracle Press) by Edward G. Finegan, Robert Liguori.
- OCA/OCP Java SE 7 Programmer I & II Study Guide (Exams 1Z0-803 & 1Z0-804) by Kathy Sierra

| Course                                                                                       | Course Name                                                                               | L-T-P         | Credits        | Pre-        |  |
|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------|----------------|-------------|--|
| Code                                                                                         |                                                                                           |               |                | requisite   |  |
| EC259                                                                                        | Data Analytics                                                                            | 0-0-8         | 4              | NIL         |  |
| Course Outcomes (CO)**:                                                                      |                                                                                           |               |                |             |  |
| CO1:                                                                                         | Apply knowledge of dispersion on grouped a                                                | and ungrou    | ped data case  | es.         |  |
| CO2:                                                                                         | Evaluate discrete and continuous probability                                              | distributio   | ns to various  | business    |  |
|                                                                                              | problems.                                                                                 |               |                |             |  |
| CO3:                                                                                         | Perform Test of Hypothesis as well as calculate confidence interval for a                 |               |                |             |  |
|                                                                                              | population parameter.                                                                     |               |                |             |  |
| *The mappi                                                                                   | ing of CO/PO attainment/Graduate Attributes                                               | are at Appe   | endix-A        |             |  |
| Data Science                                                                                 | ce fundamentals, R and R Studio, Version C                                                | Control and   | GitHub, R      | Markdown,   |  |
| scientific th                                                                                | ninking and Big data, Programming with R                                                  | , Loop Fur    | nctions and    | Debugging,  |  |
| Simulation                                                                                   | & Profiling, finding data and reading different                                           | ent file type | es, data stora | nge systems |  |
| and the ap                                                                                   | propriate tools to extract data from web                                                  | or from d     | latabases lik  | e MySQL,    |  |
| organizing,                                                                                  | merging and managing the data you have col                                                | llected, tex  | t and date m   | anipulation |  |
| in R, the ba                                                                                 | asics of analytic graphics and the base plotti                                            | ng system     | in R, graphi   | ng systems  |  |
| available in                                                                                 | available in R: the Lattice system and the ggplot2 system. While the base graphics system |               |                |             |  |
| provides many important tools for visualizing data, it was part of the original R system and |                                                                                           |               |                |             |  |
| lacks many                                                                                   | features that may be desirable in a plotting sy                                           | stem, partio  | cularly when   | visualizing |  |



high dimensional data, statistical methods for exploratory analysis, clustering and dimension reduction techniques that allow you to make graphical displays of very high dimensional data (many variables), EDA tools

## **Suggested Books**

• Microsoft Business Intelligence Tools for Excel Analysts (WILEY)

| Course       | Course Name                                                                                                                                                                  | L-T-P        | Credits       | Pre-        |  |  |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------|-------------|--|--|
| Code         |                                                                                                                                                                              |              |               | requisite   |  |  |
| EC260        | Business Statistics                                                                                                                                                          | 0-0-8        | 4             | NIL         |  |  |
| Course Ou    | tcomes (CO)**:                                                                                                                                                               | •            |               | 4           |  |  |
| CO1:         | After completing this course, the students will be able to understand and                                                                                                    |              |               |             |  |  |
|              | apply the basic concepts of statistical anal                                                                                                                                 | ysis         |               |             |  |  |
| CO2:         | Students will be able to understand and ap                                                                                                                                   | ply the con  | cepts of hyp  | othesis     |  |  |
|              | testing                                                                                                                                                                      |              |               |             |  |  |
| CO3:         | Implement the design of experiments like                                                                                                                                     | random blo   | ock design an | ıd          |  |  |
|              | completely randomized design                                                                                                                                                 |              |               |             |  |  |
| *The mapp    | ing of CO/PO attainment/Graduate Attribut                                                                                                                                    | es are at Ap | pendix-A      |             |  |  |
| Introduction | on to Data Analysis Using Excel: Introducti                                                                                                                                  | on to sprea  | d sheets Intr | oduction to |  |  |
| spreadshee   | ets, reading data, manipulating data. B                                                                                                                                      | asic spread  | dsheet oper   | ations and  |  |  |
| functions.   | Spreadsheet Functions to Organize Data:                                                                                                                                      | Introductio  | n to some n   | nore useful |  |  |
| functions    | such as the IF, nested IF, VLOOKUP an                                                                                                                                        | d HLOOK      | UP function   | s in Excel. |  |  |
|              | on to Filtering, Pivot Tables, and Charts:                                                                                                                                   |              |               | U           |  |  |
|              | s of Excel, Construction of Pivot Tables                                                                                                                                     | e            |               |             |  |  |
|              | Excel. Advanced Graphing and Charting: C                                                                                                                                     |              |               |             |  |  |
|              | . Using the Pivot chart features of Excel,                                                                                                                                   |              | -             |             |  |  |
|              | ons, and Application to Business Decisions:                                                                                                                                  |              | -             |             |  |  |
|              | ons, Box Plot and Standard Deviation Des                                                                                                                                     | -            |               |             |  |  |
| -            | y, and Statistical Distributions. The Norma                                                                                                                                  |              |               |             |  |  |
|              | and area under curve. Working with l                                                                                                                                         |              |               |             |  |  |
|              | Population and Sample Data. Business A                                                                                                                                       |              | • 1           | U           |  |  |
|              | dence Interval Estimation: Introduction C                                                                                                                                    |              |               |             |  |  |
|              | on of Confidence Interval: Confidence Inte                                                                                                                                   |              | -             | -           |  |  |
| -            | ze Calculation. The Logic of Hypothesis                                                                                                                                      | -            | -             | • •         |  |  |
|              | Test, the Four Steps, Single Tail and Two Tail Hypothesis Tests, Guidelines, Formulas and an Application of Hypothesis Test. Type I and Type II Errors in a Hypothesis Test. |              |               |             |  |  |
|              |                                                                                                                                                                              |              | e Difference  |             |  |  |
| • 1          | s Test Application: Difference-In-Means H                                                                                                                                    | U            |               |             |  |  |
|              | Assumption. The Paired t-Test for Means                                                                                                                                      | rypouresis   | rosi, Equal   | a Unequal   |  |  |
| Suggested    | •                                                                                                                                                                            |              |               |             |  |  |
| Juzzesieu    | DOOUD                                                                                                                                                                        |              |               |             |  |  |

- Dowdy, S., Wearden, S. and Chilko, D., Statistics for Research, Wiley series (2004). 2nd ed.
- Walpole, R.E., Myers, R.H., Myers, S.L. and Ye, K., Probability and Statistics for Engineers and Scientists, Dorling Kindersley (2007). 7th ed.



- Jhonson, R.A, Gupta C. B., Miller and Freund's Probability and Statistics for Engineers, Dorling Kindersley (2007). 7th ed.
- Meyer, P.L. Introductory Probability and Statistical Applications, Addison Wesley (1970).
- Medhi, J., Stochastic Processes, New Age International, 2005.
- Goon, Gupta, Das, Gupta, Fundamental of Statistics, Vol II, Wold Press, 1999.

| CodeCodeEC261Introduction to Web Technologies0-0-84(client side)                                                                                          | requisite NIL   |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--|--|--|--|
| 5                                                                                                                                                         | NIL             |  |  |  |  |
| (client side)                                                                                                                                             |                 |  |  |  |  |
|                                                                                                                                                           |                 |  |  |  |  |
| Course Outcomes (CO)**:                                                                                                                                   |                 |  |  |  |  |
| <b>CO1:</b> Identify the basis of designing a Web site; create Web pages, link                                                                            | ts, images,     |  |  |  |  |
| tables and pages layouts in HTML                                                                                                                          |                 |  |  |  |  |
| <b>CO2:</b> Describe and identify the use of JavaScript and successfully plac                                                                             | e it into Web   |  |  |  |  |
| pages and also recognize the uses of JavaScript                                                                                                           |                 |  |  |  |  |
| <b>CO3:</b> Use JavaScript to manipulate elements in the DOM to change ap                                                                                 | pearance and    |  |  |  |  |
| visibility                                                                                                                                                |                 |  |  |  |  |
| <b>CO4:</b> Describe how intended website design features will specifically                                                                               | enefit a target |  |  |  |  |
| user group content strategy                                                                                                                               |                 |  |  |  |  |
| *The mapping of CO/PO attainment/Graduate Attributes are at Appendix-A                                                                                    |                 |  |  |  |  |
| Web programming and HTML5: Introduction to web programming,                                                                                               |                 |  |  |  |  |
| architecture, DNS, latest trends, static and dynamic content, WWW3C standa                                                                                |                 |  |  |  |  |
| between HTML & HTML5, Basics of HTML5, understanding document                                                                                             | 0               |  |  |  |  |
| formatting: Formatting tags e.g. font, Bold, italic, super script, subscript, de                                                                          |                 |  |  |  |  |
| HTML5 Quotations: q tag, blockquote, Code, abbreviation, address, cite                                                                                    |                 |  |  |  |  |
| override tag, header, footer and output Tag, meta data and meta tag, I                                                                                    |                 |  |  |  |  |
| Unordered, Definition List, Introduction to LINK: anchor element, intern                                                                                  | -               |  |  |  |  |
| external linking, attribute of anchor tag, Images: image basics, image tag, Im                                                                            |                 |  |  |  |  |
| image map and all the attributes of image and map, Table: Table tag with                                                                                  |                 |  |  |  |  |
| width, alignment, cell spacing, cell padding, cell alignment, borders rules<br>rowspan, colspan, header, footer, body sections, captions and background i |                 |  |  |  |  |
| Frames: Introduction to frameset tag, frame tag, iframes and respective at                                                                                | 0               |  |  |  |  |
| Creating form, add labels, text box, check box, radio buttons, password, pu                                                                               |                 |  |  |  |  |
| and button to a form, Use of clickable image as a submit button, pass inform                                                                              |                 |  |  |  |  |
| forms (action , method), DHTML and CSS: Introduction to DHTML, introdu                                                                                    |                 |  |  |  |  |
| ways to Insert CSS in HTML document (External Style Sheet, Internal Style Sheet, Inline                                                                   |                 |  |  |  |  |
| Styles), CSS id and class, div and span tag, CSS background: background color, background                                                                 |                 |  |  |  |  |
| image (repeat horizontally or vertically, set position and no-repeat), CSS Text: text color,                                                              |                 |  |  |  |  |
| text alignment, text decoration, CSS Font: style, family, Size, CSS lists, CSS Links, CSS                                                                 |                 |  |  |  |  |
| Tables: Table borders, collapse borders, table width and height ,table text alignment, table                                                              |                 |  |  |  |  |
| padding, table color, CSS border: style, width, color, CSS margin: ma                                                                                     | -               |  |  |  |  |
| JavaScript: History of JavaScript, Different Implementations, Determining                                                                                 | • • •           |  |  |  |  |



Object Model, Uses for JavaScript, Incorporating JavaScript in HTML documents, Basic JavaScript Syntax, Data Types and Variables, Calculations and Operators, Control Structures: Do While, While, For and For In, If Else, Switch, Break and Continue; Labels, built-in functions, user-defined functions, accessing an element by its id. Writing text to a document, Dialogue box, Event Handling: onblur, onchange, ondbclick, onclick, onfocus, onkeydown, onkeyup, onkeypress, onload, onunload, onmouseover, onmouseout, onmousedown, onmouseup, onmousemove, onreset, onselect, onsubmit, JavaScript Errors and Troubleshooting, Document Object Model: History of the DOM, Understanding the Document Object Model, DOM Node Properties: childnodes, firstnode, lastnode, nodename, nodetype, nodevalue, parent node, DOM node Methods: appendchild() and remove child(), createnode(), text type node creation, node removal, traversing document's Node, JavaScript Objects: name, maths, string ,date, array, Form Validation: Data validation and constraint validation in HTML forms

- 'Web Enabled Commercial Application Development using HTML, JavaScript, DHTML and PHP' by Ivan Bayross, 4th Edition, BPB Publications.
- 'The Complete Reference HTML & XHTML' by Thomas Powell, 4th Edition, Tata McGraw-Hill Company Limited.
- 'HTML 4.0' by E. Stephen Mack, Janan Platt, Anaya Multimedia publication.
- 'Mastering HTML, CSS & JAVA Script Web Publishing' by Laura Lemay, Rafe Coburn, Jennifer Kyrnin, 7<sup>th</sup> edition, SAMS publication.
- 'Learning web designing: a beginner's guide to HTML, CSS, JavaScript, and Web graphics' by Niederst Robbins, 4<sup>th</sup> Edition, Oreilly Publication.
- HTML5 Black Book : Covers Css3 JavaScript Xml Xhtml Ajax Php And Jquery by Kogent Learning Solutions Inc.

| Course                                                                                     | Course Name                                      | L-T-P         | Credits        | Pre-         |
|--------------------------------------------------------------------------------------------|--------------------------------------------------|---------------|----------------|--------------|
| Code                                                                                       |                                                  |               |                | requisite    |
| EC263                                                                                      | Advanced Machine Learning                        | 4-0-0         | 4              | NIL          |
| Course Ou                                                                                  | tcomes (CO)**:                                   |               |                |              |
| CO1:                                                                                       | Possess knowledge regarding basic compone        | ents of intel | ligent systen  | 18.          |
| CO2:                                                                                       | Develop an ability to design a Neural Netwo      | ork model fo  | or a given pro | oblem        |
| CO3:                                                                                       | Knowledge regarding components of convol         | utional neu   | ral network    | for the task |
|                                                                                            | of object recognition, computer vision and N     | Vatural Lang  | guage proces   | sing         |
| *The mappi                                                                                 | ng of CO/PO attainment/Graduate Attributes       | are at Appe   | endix-A        |              |
| Introduction                                                                               | n: Building intelligent machines, limits of trac | litional con  | nputer progra  | ams. Neural  |
| Network: T                                                                                 | he neuron, linear perceptrons as neurons,        | Artificial    | Neural Net     | work, feed   |
| forward NN                                                                                 | N, activation function, softmax output laye      | r. Training   | Feed Forw      | ard Neural   |
| Network: C                                                                                 | Gradient descent algorithm, delta rule and       | learning      | rates, Back    | propagation  |
| algorithm, relationship between forward and backward propagation stochastic gradient       |                                                  |               |                |              |
| descent. Convolutional NN: convolution layer, Max layer, full architecture of CNN.         |                                                  |               |                |              |
| Applications of Deep Learning: Object recognition, sparse coding, computer vision, natural |                                                  |               |                |              |
| language pr                                                                                | ocessing.                                        |               |                |              |



- "Fundamentals of deep learning: Designing next-generation machine intelligence algorithm", 1<sup>st</sup> edition by Nikhil Buduma, Nicholas Locascio, O' Reilly Media Inc.
- "Grokking Deep Learning", 1<sup>st</sup> edition by Andrew W. Trask, Manning Publication Co.

| Course                                                                              | Course Name                                                                | L-T-P         | Credits         | Pre-         |  |  |
|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------|-----------------|--------------|--|--|
| Code                                                                                |                                                                            |               |                 | requisite    |  |  |
| EC264                                                                               | Big Data Analytics with Ecosystem                                          | 4-0-0         | 4               | NIL          |  |  |
| Course Outcomes (CO)**:                                                             |                                                                            |               |                 |              |  |  |
| CO1:                                                                                | Develop concepts about what insights big data can provide through basic    |               |                 |              |  |  |
|                                                                                     | understanding of the tools and systems used                                | d by big data | a scientists ar | nd           |  |  |
|                                                                                     | engineers.                                                                 |               |                 |              |  |  |
| CO2:                                                                                | Understand the basics of using Hadoop with                                 | h Map Redu    | ce and how t    | o perform    |  |  |
|                                                                                     | predictive modeling and leverage graph and                                 | alytics to mo | del problems    | 8.           |  |  |
| CO3:                                                                                | Master the concepts of HDFS (Hadoop Dis                                    | tributed File | System), YA     | ARN (Yet     |  |  |
|                                                                                     | Another Resource Negotiator), & understar                                  | nd how to we  | ork with Had    | oop storage  |  |  |
|                                                                                     | & resource management                                                      |               |                 |              |  |  |
| CO4:                                                                                | Develop an ability to ask right questions ab                               | out data, com | mmunicate e     | ffectively   |  |  |
|                                                                                     | with data scientists, and do basic exploration                             |               | -               | sets.        |  |  |
| *The mapp                                                                           | ing of CO/PO attainment/Graduate Attributes                                | s are at Appe | endix-A         |              |  |  |
| Introduction                                                                        | n to big data: Introduction, distributed file s                            | ystem, Big l  | Data and its    | importance,  |  |  |
| Drivers, I                                                                          | Big data analytics, Big data applicat                                      | ions. Algo    | rithms, Ma      | trix-Vector, |  |  |
| Multiplicat                                                                         | ion by Map Reduce. Introduction to HADO                                    | DOP: Big D    | ata, Apache     | Hadoop &     |  |  |
| Hadoop Ecosystem, MapReduce, Data Serialization. HADOOP Architecture: Architecture, |                                                                            |               |                 |              |  |  |
| Storage, T                                                                          | Storage, Task trackers, Hadoop HADOOP ecosystem and yarn: Hadoop ecosystem |               |                 |              |  |  |
| components, Hadoop 2.0 New Features NameNode High Availability, HDFS Federation,    |                                                                            |               |                 |              |  |  |
| MRv2, YARN, Running MRv1 in YARN.                                                   |                                                                            |               |                 |              |  |  |
| Suggested                                                                           | Suggested Books                                                            |               |                 |              |  |  |

- Suggested Books
  - Big Data Analytics (Set of 4 books) Authors: Manoochehri ,Murthy, Lander, Bradberry Publisher:- TMH
  - Hadoop: The Definitive Guide, 4th Edition BY Tom White Publisher:- TMH
  - Big Data Fundamentals Authors: Thomas Erl, Wajid Khattak, Paul Buhler Publisher : Pearson

| Course    | Course Name                                                                   | L-T-P       | Credits       | Pre-      |  |  |
|-----------|-------------------------------------------------------------------------------|-------------|---------------|-----------|--|--|
| Code      |                                                                               |             |               | requisite |  |  |
| EC266     | Cloud Computing & Virtualization                                              | 4-0-0       | 4             | NIL       |  |  |
| Course Ou | Course Outcomes (CO)**:                                                       |             |               |           |  |  |
| CO1:      | Articulate the main concepts, key technologies, strengths, and limitations of |             |               |           |  |  |
|           | Cloud computing and the possible applications for state-of-the-art Cloud      |             |               |           |  |  |
| computing |                                                                               |             |               |           |  |  |
| CO2:      | Identify the architecture and infrastructure of                               | f Cloud con | nputing, incl | uding     |  |  |



|      | SaaS, PaaS, IaaS, public Cloud, private Cloud, hybrid Cloud, etc.         |
|------|---------------------------------------------------------------------------|
| CO3: | Identify problems, explain, analyze, and evaluate various cloud computing |
|      | solutions.                                                                |

\*The mapping of CO/PO attainment/Graduate Attributes are at Appendix-A Introduction to Cloud, Defining the Cloud Computing, Characteristics of Cloud Computing, Evolution of Cloud Computing, Difference with Existent Technologies, Deployment Models, Service Models, Benefits of Cloud Computing, Limitations of Cloud Computing, Enabling Technologies to Cloud Computing: Virtualization, Service Oriented Architecture, Web Services, Hardware Key Issues in Research/Industry Community, Future Roadmap. Resource Management and Load Balancing: Distributed Management of Virtual Infrastructures Server consolidation, Dynamic provisioning and resource management, Resource Optimization, Resource dynamic reconfiguration, Scheduling Techniques for Advance Reservation, Load Balancing, Load balancing techniques, Capacity Management to meet SLA Requirements, Migration and Fault Tolerance: Broad Aspects of Migration into Cloud, Migration of virtual Machines and techniques. Fault Tolerance Mechanisms. Security: Vulnerability Issues and Security Threats, Application-level Security, Data level Security, and Virtual Machine Level Security, Infrastructure Security, and Multi-Tenancy Issues. IDS: host-based and network-based, Security-as-a-Service. Trust Management, Identity Management, and Access Controls Techniques. Overview, Traditional IT infrastructure, shortcoming of physical Infrastructures, Benefits of virtualization, Implementing virtualization, typical hardware/software server stack, Type of virtualization, Impact of virtualization, type of server virtualization, type of hypervisors, type of desktop virtualization, Storage virtualization, Network virtualization, Application virtualization, Virtualization and cloud.

- Mastering Cloud Computing, Foundations and Applications Programming by Rajkumar Buyya (The University of Melbourne and Manjrasoft Pty Ltd, Australia), Christian Vecchiola (The University of Melbourne and IBM Research, Australia), S. ThamaraiSelvi (Madras Institute of Technology, Anna University, Chennai, India).
- Cloud Computing: A Practical Approach by Anthony T. Velte Toby J. Velte, Ph.D. Robert Elsenpeter.
- Cloud Security and Privacy: An Enterprise Perspective on Risks and Compliance, Tim Mather, Subra Kumaraswamy, Shahed Latif, O'Reilly.

| Course    | Course Name                                           | L-T-P       | Credits       | Pre-requisite |  |  |
|-----------|-------------------------------------------------------|-------------|---------------|---------------|--|--|
| Code      |                                                       |             |               |               |  |  |
| EC267     | Advanced Web Technologies (Server                     | 0-0-8       | 4             | Introduction  |  |  |
|           | Side)                                                 |             |               | to Web        |  |  |
|           |                                                       |             |               | Technologies  |  |  |
| Course Ou | tcomes (CO)**:                                        |             |               |               |  |  |
| CO1:      | Manipulate elements on a webpage and re               | esponding t | o user intera | octions       |  |  |
| CO2:      | Develop web, desktop, and mobile applications         |             |               |               |  |  |
| CO3:      | Use Angular JS to develop cross-platform applications |             |               |               |  |  |



\*The mapping of CO/PO attainment/Graduate Attributes are at Appendix-A

Introduction to Server Side Programming, Additional PHP, Database Concepts and Relational Database Design, PHP Database Access, Database Modification, PHP Wrap-up and Midterm, Java Servlets, Java Server Pages (JSPs), Consuming Web Services, Java Database Access (JDBC), Object-relational Mapping (JPA).

- 'Web Enabled Commercial Application Development using HTML, JavaScript, DHTML and PHP' by Ivan Bayross, 4th Edition, BPB Publications.
- 'The Complete Reference HTML & XHTML' by Thomas Powell, 4th Edition, Tata McGraw-Hill Company Limited.
- 'HTML 4.0' by E. Stephen Mack, Janan Platt, Anaya Multimedia publication.
- 'Mastering HTML, CSS & JAVA Script Web Publishing' by Laura Lemay, Rafe Coburn, Jennifer Kyrnin, 7<sup>th</sup> edition, SAMS publication.
- 'Learning web designing: a beginner's guide to HTML, CSS, JavaScript, and Web graphics' by Niederst Robbins, 4<sup>th</sup> Edition, Oreilly Publication.
- HTML5 Black Book : Covers Css3 Javascript Xml Xhtml Ajax Php And Jquery by Kogent Learning Solutions Inc.

| Course                                                                               | Course Name                                                                    | L-T-P       | Credits      | Pre-         |  |  |
|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------|--------------|--------------|--|--|
| Code                                                                                 |                                                                                |             |              | requisite    |  |  |
| EC268                                                                                | Android Application Development                                                | 0-0-8       | 4            | Core         |  |  |
|                                                                                      |                                                                                |             |              | Java         |  |  |
| Course Ou                                                                            | tcomes (CO)**:                                                                 |             |              |              |  |  |
| CO1:                                                                                 | Understand the basics of Android platform                                      | and the lif | ecycle of an |              |  |  |
|                                                                                      | application.                                                                   |             |              |              |  |  |
| <b>CO2:</b>                                                                          | Design simple GUI applications using buil                                      | t-in widget | s and compo  | onents, and  |  |  |
|                                                                                      | work with the database to store data locally                                   | /.          |              |              |  |  |
| CO3:                                                                                 | Design and build an original Android from                                      | concept to  | working pro  | ogram and    |  |  |
|                                                                                      | publish an application to the Android Mark                                     | ket.        |              |              |  |  |
|                                                                                      | ing of CO/PO attainment/Graduate Attribute                                     | 1           | -            |              |  |  |
| Android St                                                                           | udio Installation, Install JDK, Install And                                    | lroid Studi | o (Windows   | s), Android  |  |  |
| Studio Tou                                                                           | r, Android Emulator, AVD in Android Stud                                       | io ,Hardwa  | re Device, H | Hello World  |  |  |
|                                                                                      | reating my first APP, Android Overview,                                        |             |              |              |  |  |
|                                                                                      | Strings.xml & message localization, Res                                        |             |              |              |  |  |
| Dependence                                                                           | ies, Android Broadcast Intent and Broadca                                      | st Receive  | r, Debuggin  | g, Working   |  |  |
| with my A                                                                            | App, Persisting Application State, Debu                                        | g Logcat    | Errors, Ir   | ntroduction, |  |  |
| Recyclervie                                                                          | ew, Adapter &ViewHolder, Fragments, Mat                                        | erial Desig | n Elements,  | Navigation   |  |  |
| ,Testing wi                                                                          | th Espresso ,Working with my App, Add                                          | ing Views   | Dynamicall   | y, Building  |  |  |
| Layouts fo                                                                           | r screen configuration changes, Working                                        | with Cust   | om Styles    | & Themes,    |  |  |
| Android Hierarchical Navigation ,Webview, Custom Views, Permission system,           |                                                                                |             |              |              |  |  |
| AsyncTask, Threading and Handlers, Using AsyncTask vs. Java Threads (with Handlers), |                                                                                |             |              |              |  |  |
| Loaders, A                                                                           | Loaders, AsyncTaskLoader&CursorLoader, Background Services, Android Scheduling |             |              |              |  |  |
| task, Work                                                                           | ing with my App, Access Files in Assets,                                       | Access Re   | sources, Sav | ve Data and  |  |  |

Files, SQLite Databases, Content Providers, Loaders, Background Services, Widgets, Notifications, Getting Ready for Deployment, Publish on Play Store.

#### Suggested Books:

- Mark L Murphy, "Beginning Android", Wiley India Pvt Ltd.
- Android Application Development All in one for Dummies by Barry Burd, Edition: I
- Mobile Apps for Android (IBM ICE)

| Course   | Course Name                                                                | L-T-P | Credits | Pre-requisite |  |  |  |
|----------|----------------------------------------------------------------------------|-------|---------|---------------|--|--|--|
| Code     |                                                                            |       |         |               |  |  |  |
| EC269    | Artificial Intelligence & expert                                           | 4-0-0 | 4       | NIL           |  |  |  |
|          | system                                                                     |       |         |               |  |  |  |
| Course C | Outcomes (CO)**:                                                           |       |         |               |  |  |  |
| CO1:     | Learning the basic concepts of Artificial Intelligence.                    |       |         |               |  |  |  |
| CO2:     | Represent Knowledge using propositional calculus and predicate calculus.   |       |         |               |  |  |  |
| CO3:     | Use inference rules to produce predicate calculus expression.              |       |         |               |  |  |  |
| CO4:     | Demonstrate awareness of informed search and uninformed search techniques. |       |         |               |  |  |  |
| CO5:     | Explain about AI techniques for planning, knowledge representation and     |       |         |               |  |  |  |
|          | management.                                                                |       |         |               |  |  |  |

\*The mapping of CO/PO attainment/Graduate Attributes are at Appendix-A

Introduction: Artificial Intelligence and its applications, Artificial Intelligence Techniques, Level of models, criteria of success, Intelligent Agents, Nature of Agents, Learning Agents. AI Techniques, Importance, functions, advantages, and limitations of AI, problem solving techniques: State space search, control strategies, heuristic search, problem characteristics, production system characteristics., Generate and test, Hill climbing, best first search, A\* search, Constraint satisfaction problem, Mean-end analysis, Min-Max Search, Alpha-Beta Pruning, Additional refinements, Iterative Deepening, knowledge representation schemes: Mapping between facts and representations, Approaches to knowledge representation, LOGIC: Propositional logic, predicate logic, Resolution, Resolution in proportional logic and predicate logic, Clause form, unification algorithm, knowledge representation and reasoning: procedural vs declarative knowledge, Forward vs. Backward reasoning, Matching, conflict resolution, Non-monotonic reasoning, Default reasoning, statistical reasoning, fuzzy logic Weak and Strong filler structures, semantic nets, frame, conceptual dependency, scripts, planning: The Planning problem, planning with state space search, partial order planning, planning graphs, planning with propositional logic, Analysis of planning approaches, Hierarchical planning, conditional planning, Continuous and Multi Agent planning natural language processing and expert system: Basic Tasks of Natural Language processing, Expert systems, Expert system examples, Expert System Architectures, Rule base Expert systems, Non Monotonic Expert Systems, Decision tree base Expert Systems. AI problems: Pattern (biological sequence) recognition, Voice recognition, Feature extraction.

#### **Suggested Books:**

• Artificial Intelligence: A modern approach by Stuart Russel, Pearson Education,



#### 2010.

- Artificial Intelligence by Rich and Knight, TMH, 2003.
- Artificial Intelligence: A new synthesis by Nils and Nilson, Elsevier, 1997.
- Artificial Intelligence by Luger, Pearson Education, 2008.
- Artificial Intelligence by Padhy, Oxford Press, 2005.

#### **<u>12.5 Open Elective Courses</u>**

| S. No. | Course Code | Name of the Course                         | Credits |
|--------|-------------|--------------------------------------------|---------|
| 1      | EC270       | Computer Networks                          | 4       |
| 2      | EC271       | Object Oriented Software Engineering       | 4       |
| 3      | EC272       | Advanced Programming Concepts              | 4       |
| 4      | EC273       | Computer system Architecture               | 4       |
| 5      | EC227       | Probability Theory and Random Processes    | 4       |
| 6      | GI101       | Numerical Ability & logical reasoning      | 4       |
| 7      | CL601       | Life skills                                | 4       |
| 8      | EC252       | Scientific computing                       | 4       |
| 9      | EC274       | Business Intelligence and data warehousing | 4       |
| 10     | EC228       | Project Management                         | 4       |
| 11     | EC275       | Essentials of Information Technology       | 4       |

| Course                                                                                  | Course Name                                                                       | L-T-P        | Credits      | Pre-         |  |
|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------|--------------|--------------|--|
| Code                                                                                    |                                                                                   |              |              | requisite    |  |
| EC270                                                                                   | Computer Networks                                                                 | 0-0-8        | 4            | NIL          |  |
| Course Ou                                                                               | tcomes (CO)**:                                                                    |              |              |              |  |
| CO1:                                                                                    | Understand the small networks by followir                                         | ng the top-c | lown approa  | ch from      |  |
|                                                                                         | application to physical layer.                                                    |              |              |              |  |
| CO2:                                                                                    | Acquire theoretical knowledge about the d                                         | ifferent net | work techno  | logies       |  |
| CO3:                                                                                    | Understand the functioning of different la                                        | yers in OSI  | model and    | TCP/IP.      |  |
| *The mapp                                                                               | ing of CO/PO attainment/Graduate Attribute                                        | es are at Ap | pendix-A     |              |  |
| Introduction                                                                            | n: Data Communications, Network criteria,                                         | , Physical 1 | topology, Ca | ategories of |  |
| networks, H                                                                             | networks, Protocols and standards, Network Models - Layered Tasks, The OSI model, |              |              |              |  |
| Layers in the OSI model, TCP/IP protocol suite, Addressing: Physical addresses, logical |                                                                                   |              |              |              |  |
| addresses, port addresses, specific addresses. Transmission impairments, Data Rate      |                                                                                   |              |              |              |  |
| limits, Performance, Transmission Media: Guided Media, Unguided Media: wireless         |                                                                                   |              |              |              |  |

Switching: Circuit switched networks, Datagram networks, virtual circuit Networks. Data Link Layer - framing, Character stuffing, bit stuffing, Error Detection and Correction (CRC, Hamming Code, Parity Bit, checksum) Data link protocols -simplest, stop-and-wait protocol, Sliding window protocols- 1-bit sliding window protocol, go back-n, selective repeat protocol, piggybacking, : Channel allocation, Multiple access protocols: random access (Aloha, Pure aloha, slotted aloha), controlled access (reservation, polling, token passing), Wired LANS- standard Ethernet, Wireless LANs, Bluetooth, IPv4 addresses ( IP protocol, IP addresses, Subnets, NAT), IPv6 addresses,



Routing protocols: delivery, forwarding, Unicast routing protocols (optimization, intra and inter domain routing, distance vector routing, link state routing, path vector routing), Process to process delivery, Process to process delivery UDP (user datagram, checksum, UDP operation), Process to process delivery TCP (TCP services, TCP features, TCP connection), Congestion and Congestion control. DNS, Electronic Mail and File Transfer, HTTP, WWW, TELNET.

- 'Introduction to Data Communications and Networking' by B. Forouzan, Tata McGraw Hill, Fourth Edition, 2004
- 'Computer Networks' by Andrew S. Tanenbaum, Pearson Education, Fourth Edition.

| Course                                                                                                                                                                          | Course Name                                                                                 | L-T-P        | Credits       | Pre-         |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------|---------------|--------------|--|
| Code                                                                                                                                                                            |                                                                                             | 0.0.0        | 4             | requisite    |  |
| EC271                                                                                                                                                                           | Object Oriented Software Engineering                                                        | 0-0-8        | 4             | OOP          |  |
|                                                                                                                                                                                 |                                                                                             |              |               | using<br>C++ |  |
| Course Ou                                                                                                                                                                       | taamaa (CO)***                                                                              |              |               | C++          |  |
| Course Ou<br>CO1:                                                                                                                                                               | tcomes (CO)**:                                                                              | aionoo moo   | thomation for | ndomontolo   |  |
|                                                                                                                                                                                 | Acquire strong fundamental knowledge in s                                                   |              |               |              |  |
|                                                                                                                                                                                 | of computer science, software engineering a                                                 | ina mutuais  | cipinary eng  | gineering to |  |
| COL                                                                                                                                                                             | begin in practice as a software engineer.                                                   | 1:4:         | 1             |              |  |
| CO2:                                                                                                                                                                            | Design applicable solutions in one or more                                                  |              |               | -            |  |
|                                                                                                                                                                                 | engineering approaches that integrate eth                                                   | incal, socia | i, legal and  | economic     |  |
| <u> </u>                                                                                                                                                                        | concerns.                                                                                   |              | leedenshin a  | 1:11         |  |
| CO3:                                                                                                                                                                            | Deliver quality software products by poss-                                                  | -            | _             |              |  |
|                                                                                                                                                                                 | individual or contributing to the team develo                                               | -            |               | -            |  |
|                                                                                                                                                                                 | and modern working strategies by ap                                                         | prying bot   | n communi     | cation and   |  |
| <b>CO4:</b>                                                                                                                                                                     | negotiation management skill.                                                               |              | nalaziaa ta   | huin a ant   |  |
| 004:                                                                                                                                                                            | Apply new software models, techniques                                                       |              | U             | U            |  |
|                                                                                                                                                                                 | innovative and novelistic solutions for the<br>and evolving into their continuous professio | -            | •             | an aspects   |  |
| *The monn                                                                                                                                                                       | ing of CO/PO attainment/Graduate Attributes                                                 |              |               |              |  |
| 11                                                                                                                                                                              | of System Analysis & Design, Business Syst                                                  | 11           |               | avalonment   |  |
|                                                                                                                                                                                 | , Waterfall Model, Spiral Model, Feasibilit                                                 |              | •             | -            |  |
| •                                                                                                                                                                               | fit Analysis, COCOMO model. System Requ                                                     | •            |               | •            |  |
|                                                                                                                                                                                 | ER diagram, Process Organization & Inter-                                                   | -            |               |              |  |
| • •                                                                                                                                                                             |                                                                                             | •            | U             |              |  |
| Partitioning, Top-Down and Bottom-Up design; Decision tree, decision table and structured                                                                                       |                                                                                             |              |               |              |  |
| English; Functional vs. Object- Oriented approach. Coding & Documentation - Structured Programming, OO Programming, Information Hiding, Reuse, System Documentation.            |                                                                                             |              |               |              |  |
| Ũ                                                                                                                                                                               |                                                                                             |              | •             |              |  |
| Testing – Levels of Testing, Integration Testing, Test case Specification, Reliability<br>Assessment, Validation & Verification Metrics, Monitoring & Control. Software Project |                                                                                             |              |               |              |  |
|                                                                                                                                                                                 | Management – Project Scheduling, Staffing, Software Configuration Management, Quality       |              |               |              |  |
| -                                                                                                                                                                               | Project Monitoring. CASE TOOLS: Concepts                                                    | -            | -             | and, Zumity  |  |
| Assurance, Project Monitoring. Crist Pools. Concepts, use and appreadon.                                                                                                        |                                                                                             |              |               |              |  |



- R. G. Pressman Software Engineering, TMH.
- Behforooz, Software Engineering Fundamentals, OUP.
- Ghezzi, Software Engineering, PHI.

| Course | Course Name                                                                                                                                                                           | L-T-P       | Credits       | Pre-requisite     |  |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------|-------------------|--|
| Code   |                                                                                                                                                                                       |             |               |                   |  |
| EC272  | Advance Programming Concepts                                                                                                                                                          | 0-0-8       | 4             | Introduction      |  |
|        |                                                                                                                                                                                       |             |               | to C              |  |
|        |                                                                                                                                                                                       |             |               | Programming,      |  |
|        |                                                                                                                                                                                       |             |               | OOP using         |  |
|        |                                                                                                                                                                                       |             |               | C++,              |  |
|        | tcomes (CO)**:                                                                                                                                                                        |             |               |                   |  |
| CO1:   | Students will gain an in-depth knowled                                                                                                                                                | dge about o | overall synta | x and semantics   |  |
|        | of C/C++ programs                                                                                                                                                                     |             |               |                   |  |
| CO2:   | Students will be able to use an IDE to                                                                                                                                                | compile, lo | oad, save, an | id debug a        |  |
|        | C/C++ program                                                                                                                                                                         |             |               |                   |  |
| CO3:   | Students will develop technical thinkir                                                                                                                                               | ng and prob | olem solving  | g ability to find |  |
|        | an appropriate solution for a problem.                                                                                                                                                |             |               |                   |  |
| CO4:   | Students will be able to demonstrate t                                                                                                                                                | -           |               |                   |  |
|        | determine that a solution produces exp                                                                                                                                                | -           |               | -                 |  |
| -      | ing of CO/PO attainment/Graduate Attr                                                                                                                                                 |             |               |                   |  |
|        | Structure of a c program, Writing                                                                                                                                                     | 1 0         | · 1           | · U               |  |
|        | Using comments, Identifiers: Nome                                                                                                                                                     |             |               |                   |  |
|        | Reserved Keywords Data Types: Introd                                                                                                                                                  |             |               |                   |  |
| • -    | e, Expressions, Statements, Symbolic                                                                                                                                                  |             | • •           | • -               |  |
| -      | put Output in C: Introduction, scanfe                                                                                                                                                 | -           | -             | -                 |  |
|        | , Relational, Logical, Assignment, Con                                                                                                                                                |             |               |                   |  |
|        | onstruct: Conditional Statements: if,                                                                                                                                                 |             |               |                   |  |
|        | operator, looping: Types of Loops:                                                                                                                                                    |             |               |                   |  |
|        | preak. Functions: User defined function                                                                                                                                               |             |               |                   |  |
|        | n, Need & Importance, Types of Ar                                                                                                                                                     | -           |               | -                 |  |
|        | al Arrays, Initialization of arrays, inpu                                                                                                                                             | e           |               |                   |  |
|        | Dimensional Arrays, Declaration of an Array, Initialization of an Array, Passing 1d to<br>Function, passing two dimensional array to function, Sparse Matrix, Strings : Reading       |             |               |                   |  |
| -      |                                                                                                                                                                                       | -           |               | •                 |  |
|        | g strings String functions (Predefined),                                                                                                                                              |             |               |                   |  |
|        | strncat(), strcpy(), strncpy(), strlen(), strncpy, Implementing user defined functions for Strcpy, strlen, strcmp, strlwr, strupr, strcat, Pointers, Introduction to pointer :Pointer |             |               |                   |  |
|        | and pointer arithmetic Assignment, V                                                                                                                                                  |             |               | -                 |  |
| -      | lress, Adding an integer to a pointer, I                                                                                                                                              |             | -             | •                 |  |
| *      | r, open file, close file Read data from :                                                                                                                                             |             | 0 1           | •                 |  |
|        | a from a file, fputc(), fputs(), fprintf(), fv                                                                                                                                        |             |               |                   |  |
| -      | de, Detecting End-of-file, Accepting c                                                                                                                                                |             |               |                   |  |
|        | ac, Detecting Lite-of-the, Accepting c                                                                                                                                                |             | ine arguiner  |                   |  |



selecting record randomly fseek(), ftell(), rewind(), Difference between Text Mode, Binary Mode, Detecting End-of-file Accepting command line arguments, Functions for selecting record randomly fseek(), ftell(), rewind(). PreProcessor Directive and Revision, Structure: Declaring Structure Accessing members of Structure, Copying Structure Accessing Structure elements, Nested Structure Array of structure, passing structure elements to a function individually Passing entire structure to a function. Union: Union Accessing member of Union Unions Inside structure, Pointer to structure, Passing pointer of structure to function, Pointers and strings Passing pointer to a function, Representing arrays as pointer, Arrays of pointers, Null pointers, Generic pointer, Dynamic Allocation of Arrays, Allocating block of memory ,Releasing the used block, To Alter the size of allocated memory, Allocating memory to single dimensional array, Allocating memory to two dimensional array, PreProcessor Directive And Revision. Introduction to objectoriented programming: Properties of Object -Oriented Programming, Advanced C++ fundamentals: bool data type, namespaces, Relation among structures, unions and Classes, Concept of Public, protected and Private, Concept of Constructors, types of constructors: Default, Parameterized and Copy Constructors, Destructors. Classes and Functions: Friend Functions, Friend Classes, Inline Functions, Const Objects and const Member Functions, Static Class Members, Scope Resolution operator, nested classes, local classes, passing object to function, returning object, Object assignment. Arrays, Pointers and References: Arrays of Objects of Class, Pointers as Data Members and class variables, The Size of a Class Object, passing array of objects to functions, this pointer, References, passing reference to objects and returning references. Dynamic Memory Management in C++: Dynamic memory management - new and delete Operators, Allocating objects and arrays at runtime, Possible problems with the use of pointers - Dangling/wild pointers, Null pointer assignment, Memory leak and allocation failures. Function Overloading: Function Overloading, Overloading Constructor, Copy Constructors, Default Function Arguments. Operator Overloading: Creating a member operator function, Overloading the Assignment Operators, unary and binary Operators, Operator overloading using friend function, Type Conversions, Overloading Operators new and delete, and some special operators ([],(),->,comma), Inheritance: Defining derived classes, Types of inheritance, Changing the Access Specification of Inherited Members, Multiple Inheritance, Multilevel inheritance, Inherited Member Ambiguity, Virtual Base Classes, Constructors in derived classes, Nesting of classes. Virtual Functions and Polymorphism: Understanding Polymorphism, Base Class Pointer, Virtual Function, Pure Virtual Functions, Abstract Classes, Virtual Destructors, Early vs Late binding. Templates: Introduction to Generic Functions and Classes, overloading a generic function and function template, applications of function and class template Exception Handling: Understanding type of Exceptions, throwing mechanism, catching mechanism, Rethrowing an exception, Applying exception handling. C++ Console I/O and File I/O: Stream Classes, Input/ Output using Overloaded operators >> and << and Member functions of I/O stream classes, Formatting Output, Formatting using ios class functions and flags, Formatting using manipulators. File Streams, different methods of file data reading and writing, Accessing records randomly. Standard Template Library:

Introduction to the STL Architecture, STL Components, Containers, Algorithms, Iterators, Applications of Container Classes, Using the vector Container, Accessing Elements in a vector Container and Operations on a vector Container.

## Suggested Books:

- 'Programming in C: A Practical Approach' by Ajay Mittal, 1st edition, Pearson Publication
- 'Computer concepts and C programming' by Vikas Gupta, 1st edition, Dreamtech press
- 'The C Programming Language' by Dennis Ritchie and Brian. W. Kernighan, 2nd edition, Prentice Hall

| Course                  | Course Name                                                                    | L-T-P | Credits | Pre-      |
|-------------------------|--------------------------------------------------------------------------------|-------|---------|-----------|
| Code                    |                                                                                |       |         | requisite |
| EC273                   | Computer System Architecture                                                   | 3-1-2 | 4       | NIL       |
| Course Outcomes (CO)**: |                                                                                |       |         |           |
| CO1:                    | Ability to Understand Basic structure of computer                              |       |         |           |
| CO2:                    | Ability to perform Computer's Arithmetic Operations                            |       |         |           |
| CO3:                    | Ability to understand control unit operations                                  |       |         |           |
| CO4:                    | Ability to Design memory organization that uses different word size operations |       |         |           |
| CO5:                    | Ability to understand concept of cache memory technique                        |       |         |           |
| *The mappi              | *The mapping of CO/PO attainment/Graduate Attributes are at Appendix-A         |       |         |           |

Basic Structure of Computers, Functional units, software, performance issues software, machine instructions and programs, Types of instructions, Instruction sets: Instruction formats, Assembly language, Stacks, Ques, Subroutines. Processor organization, Information representation, number formats. Multiplication & division, ALU design, Floating Point arithmetic, IEEE 754 floating point formats Control Design, Instruction sequencing, Interpretation, hard wired control - Design methods, and CPU control unit. Microprogrammed Control - Basic concepts, minimizing micro instruction size, multiplier control unit. Microprogrammed computers - CPU control unit Memory organization, device characteristics, RAM, ROM, Memory management, Concept of Cache & associative memories, Virtual memory. System organization, Input - Output systems, Interrupt, DMA, Standard I/O interfaces Concept of parallel processing, Pipelining, Forms of parallel processing, interconnect network.

- V.CarlHammacher, "Computer Organisation", Fifth Edition.
- A.S.Tanenbum, "Structured Computer Organisation", PHI, Third edition
- Y.Chu, "Computer Organization and Microprogramming", II, Englewood Chiffs, N.J., Prentice Hall Edition
- M.M.Mano, "Computer System Architecture", Edition
- C.W.Gear, "Computer Organization and Programming", McGraw Hill, N.V. Edition.
- Hayes J.P, "Computer Architecture and Organization", PHI, Second edition.

| Course      | Course Name                                                                                                                    | L-T-P         | Credits        | Pre-        |  |  |  |
|-------------|--------------------------------------------------------------------------------------------------------------------------------|---------------|----------------|-------------|--|--|--|
| Code        |                                                                                                                                |               |                | requisite   |  |  |  |
| EC227       | Probability Theory and Random                                                                                                  | 3-0-0         | 3              | NIL         |  |  |  |
|             | Processes                                                                                                                      |               |                |             |  |  |  |
| Course Out  | Course Outcomes (CO)**:                                                                                                        |               |                |             |  |  |  |
| CO1:        | <b>CO1:</b> Apply the fundamentals of probability theory and random processes                                                  |               |                |             |  |  |  |
|             | practical engineering problems, and identify and interpret the key parameters                                                  |               |                |             |  |  |  |
|             | that underlie the random nature of the proble                                                                                  |               |                |             |  |  |  |
| CO2:        | Gain advanced and integrated understand                                                                                        | ling of the   | e fundament    | als of and  |  |  |  |
|             | interrelationship between discrete and c                                                                                       | ontinuous     | random var     | riables and |  |  |  |
|             | between deterministic and stochastic process                                                                                   | ses.          |                |             |  |  |  |
| CO3:        | Analyse the performance in terms of probab                                                                                     | ilities and d | istributions a | achieved by |  |  |  |
|             | the determined solutions.                                                                                                      |               |                |             |  |  |  |
| CO4:        | Acquire competence in applying statistical i                                                                                   | methods to    | solve basic p  | problems in |  |  |  |
|             | information and communication technology                                                                                       |               |                |             |  |  |  |
|             | ng of CO/PO attainment/Graduate Attributes                                                                                     |               |                |             |  |  |  |
| •           | Theory: Definitions of Probability, Axioms                                                                                     |               | •              | • •         |  |  |  |
| -           | of Probabilities, Joint and Conditional P                                                                                      |               | · •            |             |  |  |  |
|             | riables: Probability Distribution Functions, P                                                                                 | •             | •              |             |  |  |  |
|             | of Two Variables, Conditional Proba                                                                                            | •             |                | •           |  |  |  |
| -           | Random Variables. Statistical Averages: Fu                                                                                     |               |                |             |  |  |  |
|             | Random, Statistical Averages, Characteristic Function of Random Variables, Inequalities of                                     |               |                |             |  |  |  |
| •           | Chebyshev and Schwartz, Convergence Concepts, Central Limit Theorem. Random                                                    |               |                |             |  |  |  |
|             | Processes: Stationarity, Ergodicity, Covariance Function and their Properties, Spectral                                        |               |                |             |  |  |  |
| -           | ion, Weiner- Kinchine Theorem, Linear oper                                                                                     |               | Issian Functi  | on, Poisson |  |  |  |
|             | low pass and Band-pass Noise Representation                                                                                    | 1.            |                |             |  |  |  |
| Suggested I |                                                                                                                                |               |                |             |  |  |  |
|             | Probability Theory and Random Processes, S                                                                                     | S. P. Eugen   | e Xavier, S.   | Chand and   |  |  |  |
|             | Co. New Delhi, 1998 (2nd Edition).                                                                                             | · 1           | 1 75 . 17      | 0 1111      |  |  |  |
|             | Probability Theory and Random Signal Prince Probability Theory and Random Signal Prince Publishers.                            | ciples, Peel  | oles, Tata M   | cGrew Hill  |  |  |  |
| •           | Signal Analysis, Papoulis, McGraw Hill N. Y.                                                                                   | ., 1977.      |                |             |  |  |  |
|             | <ul> <li>Introduction to Random Signals and Noise, Davenport W. B. Jrs. and W. I. Root,<br/>McGraw Hill N.Y., 1954.</li> </ul> |               |                |             |  |  |  |

| Course<br>Code          | Course Name                                                                             | L-T-P | Credits | Pre-<br>requisite |
|-------------------------|-----------------------------------------------------------------------------------------|-------|---------|-------------------|
| GI101                   | Numerical Ability and Logical                                                           | 0-0-8 | 4       | NIL               |
|                         | Reasoning                                                                               |       |         |                   |
| Course Outcomes (CO)**: |                                                                                         |       |         |                   |
| CO1:                    | CO1: Enhance the mental and Intellectual ability and critical thinking of the students. |       |         |                   |
| CO2:                    | Enhance the student's ability to use numerical data as a tool to make                   |       |         |                   |



|                                                                                        | reasonable decisions and solve problems.                                          |  |  |  |  |  |
|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--|--|--|--|--|
| CO3:                                                                                   | Interpret, analyze and draw logical conclusions based on numerical data           |  |  |  |  |  |
|                                                                                        | presented in graphs and tables.                                                   |  |  |  |  |  |
| *The mappi                                                                             | ing of CO/PO attainment/Graduate Attributes are at Appendix-A                     |  |  |  |  |  |
| VEDIC MO                                                                               | ODULE: Square and Square + Introduction with aptitude, Cube and cube              |  |  |  |  |  |
| root,Divisio                                                                           | on, Addition and Subtraction + Basic Trick, Algebric formula base, questions      |  |  |  |  |  |
| +Series(No.                                                                            | .),Rec. Numbers + Approximation, Number System Module: Number System              |  |  |  |  |  |
| – 1, Numb                                                                              | ber System – 2,H.C.F & L.C.M – 1,H.C.F & L.C.M – 2,Average (Basic),               |  |  |  |  |  |
| Average(Tr                                                                             | icks), Ratio Module: Ratio (Basic), Ratio (How to Balance a Ratio and             |  |  |  |  |  |
| Tricks), Ra                                                                            | tio (Type of Question), Problem on Ages (Basic + Questions), Partnership          |  |  |  |  |  |
| (Basic + Qu                                                                            | uestions), Allegations Part -1 (Basic Formula), Allegation (Type of Questions),   |  |  |  |  |  |
| Percentage                                                                             | Module: Introduction to Percentage, Percentage (inc. and dec.) + Population       |  |  |  |  |  |
| problem +V                                                                             | Voting problem, Percentage (%Table +Questions) + Book Questions, Simple           |  |  |  |  |  |
| Interest (In                                                                           | troduction +T.E.R), Simple Interest (Type of Questions), Simple Interest          |  |  |  |  |  |
| (Problems),                                                                            | , Compound Interest (Introduction to Basic), Compound Interest (Type of           |  |  |  |  |  |
| Questions)                                                                             | + Problem discussion +Installment, Profit and Loss (Basic), Profit and Loss       |  |  |  |  |  |
| (Type of Q                                                                             | uestions), Discount, Work and Time Module: Work and Time (Basic)Work              |  |  |  |  |  |
| and Time (I                                                                            | Part $-2$ ), Work and Time (Part $-3$ ), Work and Wages, Pipes and Cistern (Part  |  |  |  |  |  |
| -1), Pipes at                                                                          | nd Cistern (Part – 2), Time Speed and Distance Module: TSD Part – 1 – Basic,      |  |  |  |  |  |
| TSD Part –                                                                             | 2 – Type of Questions, TSD Part – 3 – Problems, The Train – Part – 1 – Basic,     |  |  |  |  |  |
| The Train -                                                                            | - Part – 2 – Type of Questions + Problems, Boat and stream – Part – 1, Boat       |  |  |  |  |  |
| and stream                                                                             | - Part - 2, Permutation and Combination Module: P and C Introduction ([or]        |  |  |  |  |  |
| and [and])P and C Part – 2 Type of Questions, P and C Part – 3 Problems, Problems, D.I |                                                                                   |  |  |  |  |  |
| and D.S Mo                                                                             | odule: D.I Simple Questions (Tables)D.I (Pie Chart)D.I (Mix Graph)Geometry        |  |  |  |  |  |
| Module: Int                                                                            | troduction (Lines, Angles, Pt., Angle System), Type of Similarity and Congru,     |  |  |  |  |  |
| Properties of                                                                          | of Quadrilateral and its properties, Circle and its properties, Centres and their |  |  |  |  |  |
| properties, I                                                                          | Mix Questions, Coordinate Geometry, 2 D Figures, 3 D Figures, 2 D and 3 D         |  |  |  |  |  |
| figures(mix                                                                            | diagrams), Algebric Module Introduction to formula, Types of Questions,           |  |  |  |  |  |
| Substitute Method, Problems + Line System, Remainder thth Module, Basic Question,      |                                                                                   |  |  |  |  |  |
| Wilsens and formetsthth, Cyclocitythth + Problems, Reasoning, Distance and Direction,  |                                                                                   |  |  |  |  |  |
| Blood Relation (Introduction), Analogy and Venn diagram, Syllogism and Classification  |                                                                                   |  |  |  |  |  |
| and Mather                                                                             | and Mathematical operation, Coding - Decoding, and Alphabet Test, Problem on Ages |  |  |  |  |  |
| and dictiona                                                                           | ary, SeriesCube and Dice and Missing number, Ranking, Clock, and Calendar,        |  |  |  |  |  |
| Inequalities                                                                           | and I/P and O/P, Puzzle, Sitting Arrangement, Statement -Argument,                |  |  |  |  |  |
| Statement-                                                                             | course of Action, Non-verbal (misc)full                                           |  |  |  |  |  |
| Suggested 2                                                                            | Books:                                                                            |  |  |  |  |  |

- Copyrighted issue of book by Rishi Gurukul is distributed among students.
- Donald Quantitative Aptitude & Verbal Nonverbal Reasoning by R.S.Aggarwal, Quantum Cat by Arihant Publications.

| Course | Course Name | L-T-P | Credits | Pre-      |
|--------|-------------|-------|---------|-----------|
| Code   |             |       |         | requisite |
| CL601  | Life Skills | 4-0-0 | 4       | NIL       |

| Course Ou   | tcomes (CO)**:                                                               |
|-------------|------------------------------------------------------------------------------|
| CO1:        | Choose appropriate phrases to construct sentences and expressions to         |
|             | communicate.                                                                 |
| CO2:        | Classify and interpret expressions and explain fluently.                     |
| CO3:        | Draw comparison and exemplify simple and direct exchange of information.     |
|             | To understand phrases and vocabulary related to areas of personal relevance. |
| <b>CO4:</b> | Participate in conversations on topics that are familiar and demonstrate     |
|             | knowledge of personal interest or pertinent to everyday life.                |
| CO5:        | Handle effortlessly a conversation, discussion and make use of idiomatic     |
|             | expressions and colloquialism.                                               |
| *The mappi  | ng of CO/PO attainment/Graduate Attributes are at Appendix-A                 |

Self-awareness, Stages of learning, SWOT analysis, Goal setting, Grooming & Body Language, Power dressing, Work Ethics, Values & Moral, Interpersonal Skills & Empathy, Leadership skills, Presentation Skills, Report writing, Team work, Interview Skills – Acing the Interview, Stress Interviews, Panel Interviews, Cracking Group Discussions, Stress Management, Anger management, Critical Thinking, Time Management, Conflict Resolution, Resume Making.

#### Suggested Books:

1. Barun K. Mitra, "Personality Development & Soft Skills", Oxford Publishers, Third impression, 2017.

2. ICT Academy of Kerala, "Life Skills for Engineers", McGraw Hill Education (India) Private Ltd., 2016.

3. The Ace of Soft Skills: Attitude, Communication and Etiquette for Success, Pearson Education; 1 edition, 2013.

4. Shalini Verma, "Development of Life Skills and Professional Practice"; First Edition; Sultan Chand (G/L) & Company, 2014.

| Course      | Course Name                                                                               | L-T-P        | Credits        | Pre-         |  |
|-------------|-------------------------------------------------------------------------------------------|--------------|----------------|--------------|--|
| Code        |                                                                                           |              |                | requisite    |  |
| EC252       | Scientific Computing                                                                      | 4-0-0        | 4              | NIL          |  |
| Course Ou   | Course Outcomes (CO)**:                                                                   |              |                |              |  |
| CO1:        | <b>CO1:</b> The students shall be able to exhibit the knowledge of the basic fundamentals |              |                |              |  |
|             | of Scientific Computing and Quantum computing                                             |              |                |              |  |
| CO2:        | Apply the different menthods used in computing like Wentzel-Kramer-                       |              |                |              |  |
|             | Brillouin Method, Runge-Kutta method, Trapezoidal method to solve the                     |              |                |              |  |
|             | computational problems.                                                                   |              |                |              |  |
| CO3:        | Apply different equations and interpolations to solve the underlying problems             |              |                |              |  |
|             | in scientific computing                                                                   |              |                |              |  |
| *The mapp   | *The mapping of CO/PO attainment/Graduate Attributes are at Appendix-A                    |              |                |              |  |
| Foundation  | Foundation of Scientific Computing, Quantum computing, Wentzel-Kramer-Brillouin           |              |                | er-Brillouin |  |
| Method, R   | Method, Runge-Kutta method, Trapezoidal method, Quasilinear, Laplace equation, wave       |              |                |              |  |
| packets, Pi | packets, Pressure fluctuation, linearized shallow water wave equation, 1D convection      |              |                |              |  |
| equation, U | pwinding, Numerical amplification factor, Pa                                              | rabolic part | ial differenti | al equation, |  |



Elliptic partial differential equations, Lagrange and hermite interpolations. **Suggested Books:** 

□ Fundamentals of Scientific Computing by Bertil Gustafsson, Springer-Verlag Berlin Heidelberg, 2011

Elements of Scientific Computing by Aslak Tveito Hans, Petter Langtangen,Bjorn Frederik, Nielsen Xing Cai, Springer, Berlin, Heidelberg, 2010.

| Course<br>Code          | Course Name                                                                        | L-T-P | Credits | Pre-<br>requisite |  |
|-------------------------|------------------------------------------------------------------------------------|-------|---------|-------------------|--|
| EC274                   | Business Intelligence and data                                                     | 4-0-0 | 4       | NIL               |  |
|                         | warehousing                                                                        |       |         |                   |  |
| Course Outcomes (CO)**: |                                                                                    |       |         |                   |  |
| CO1:                    | Understand the basic concepts of business intelligence and tools for data          |       |         |                   |  |
|                         | warehouse development.                                                             |       |         |                   |  |
| CO2:                    | Plan the implementation of a business intelligence system.                         |       |         |                   |  |
| CO3:                    | Organize big data sets into meaningful structures, incorporating data              |       |         |                   |  |
|                         | profiling and quality standards                                                    |       |         |                   |  |
| *The mapp               | *The mapping of CO/PO attainment/Graduate Attributes are at Appendix-A             |       |         |                   |  |
| Data Waral              | Data Warahayaa Eundamantala Introduction OI TD Systems Characteristics & Eunstiana |       |         |                   |  |

Data Warehouse Fundamentals: Introduction, OLTP Systems, Characteristics & Functions of Data Warehouses, Advantages and Applications of Data Warehouse, Top- Down and Bottom-Up Development Methodology, Tools for Data warehouse development, Data Warehouse Types. Planning and Requirements: Key Issues in Planning a Data Warehouse, Planning and Project Management in Data Warehouse Construction, Data Warehouse Project. Introduction to Business Intelligence as Analytical System, process of data warehousing to automate analytical processes.

- Microsoft Business Intelligence Tools for Excel Analysts (WILEY)
- Mastering the SAP Business Information Warehouse, Kevin McDonald, Wiley Publications

| Course       | Course Name                                                                      | L-T-P        | Credits       | Pre-        |
|--------------|----------------------------------------------------------------------------------|--------------|---------------|-------------|
| Code         |                                                                                  |              |               | requisite   |
| EC228        | Project Management                                                               | 4-0-0        | 4             | NIL         |
| Course Ou    | tcomes (CO)**:                                                                   |              |               |             |
| CO1:         | Develop, implement and evaluate various stages including planning,               |              |               |             |
|              | scheduling and Execution of projects.                                            |              |               |             |
| CO2:         | Understand risk management, administration, costing and budgeting challenges     |              |               |             |
|              | during projects.                                                                 |              |               |             |
| CO3:         | Identify project goals, constraints and performance criteria in project          |              |               |             |
|              | implementation                                                                   |              |               |             |
| *The mappi   | *The mapping of CO/PO attainment/Graduate Attributes are at Appendix-A           |              |               |             |
| Examining    | Examining Professional Project Management-Identify Project Management Processes, |              |               |             |
| Identify Pro | ofessional and Social Responsibilities; Identit                                  | fy the Inter | personal Skil | ls Required |



for a Project Manager. Initiating a Project-, Examine the Project Management Context, Examine Project Selection, prepare a Project Statement of Work, create a Project Charter, Identify Project Stakeholders. Planning Project Work-Identify Elements of the Project Management Plan, Document Stakeholder Requirements, Create a Scope Statement, Develop a Work Breakdown Structure, Developing Project Schedules-Create an Activity List, Create a Project Schedule Network Diagram, Estimate Activity Resources, Estimate Duration for Project Activities, Develop a Project Schedule, Identify the Critical Path, Optimize the Project Schedule, Establish a Schedule Baseline, Developing Cost Estimates and Budgets-Estimate Project Costs, Estimate the Preliminary, Cost Baseline, Reconcile Funding and Costs ,Planning Project Quality, Staffing, and Communications- Create a Quality Management Plan, Document the Project Roles, Responsibilities, and Reporting Relationships, Create a Communications Management Plan, Analyzing Risks and Planning Risk Responses-Examine a Risk Management Plan, Identify Project Risks and Triggers, Perform Qualitative Risk Analysis, Perform Quantitative Risk Analysis, Develop a Risk Response Plan, Planning Project Procurement- Plan Project Procurements, Prepare a Procurement Statement of Work, Prepare a Procurement Document, Executing Project Work-Identifying the Direct and Manage Project Execution Process, Execute a Quality Assurance Plan, Acquire the Project Team, Develop the Project Team, Manage the Project Team, Distribute Project Information, Manage Stakeholder Relationships and Expectations. Managing Project Procurement, Identify the Conduct Project Procurements Process, Obtain Responses from Sellers, Determine Project Sellers. Monitoring and Controlling Project Work, Identify the Monitor and Control Project Work Process ,Develop an Integrated Change Control System, Utilize the Integrated Change Control System, Review Deliverables and Work Results, Control the Project Scope , Monitoring and Controlling Project Schedule and Costs, Control the Project Schedule, Control Project Costs, Monitoring and Controlling Project Performance and Quality, Perform Quality Control, Report on Project Performance , Monitoring and Controlling Project Risk and Procurements, Monitor and Control Project Risk, Administer Project Procurements, Closing the Project, Close Project Procurements, Close the Project or Phase Administratively. **Suggested Books:** 

• Project Management: A Systems Approach to Planning, Scheduling, and Controlling, 10th ed., Harold Kerzner, PhD, ISBN-13: 978-0-470-27870.

| Course                  | Course Name                                                                   | L-T-P        | Credits      | Pre-      |
|-------------------------|-------------------------------------------------------------------------------|--------------|--------------|-----------|
| Code                    |                                                                               |              |              | requisite |
| EC275                   | Essentials                                                                    | 4-0-0        | 4            | NIL       |
|                         | of Information Technology                                                     |              |              |           |
| Course Outcomes (CO)**: |                                                                               |              |              |           |
| CO1:                    | Understand the concepts of Information Technology and its current and future  |              |              |           |
|                         | developments                                                                  |              |              |           |
| CO2:                    | Understand the fundamental principles for the effective use of computer-based |              |              |           |
|                         | information systems                                                           |              |              |           |
| CO3:                    | Get knowledge about the various application                                   | ns of Inform | ation Techno | ology.    |



| CO4: | Acquire knowledge about software development tools and relational databases  |  |  |
|------|------------------------------------------------------------------------------|--|--|
| CO5: | Students will be able to work on Web, database, and graphical user interface |  |  |
|      | (GUI) tools                                                                  |  |  |

\*The mapping of CO/PO attainment/Graduate Attributes are at Appendix-A

Information technology concepts and trends underlying current and future developments in information technology, and fundamental principles for the effective use of computer-based information systems. Networks and distributed computing, including the World Wide Web, hardware and operating systems, software development tools and processes, relational databases, security and cryptography, enterprise applications, and electronic commerce. Hands-on exposure to Web, database, and graphical user interface (GUI) tools.

#### Suggested Books:

- R. Kelly Rainer, Casey G. Cegielski, Brad Prince, Introduction to Information Systems, Fifth Edition, Wiley Publication, 2014.
- James F. Kurose, Computer Networking: A Top-Down Approach, Sixth Edition, Pearson, 2012.

| S. No. | <b>Course Code</b> | Name of the Course     | Credits |
|--------|--------------------|------------------------|---------|
| 1.     | HR101              | Human Rights & Values  | NC      |
| 2.     | DM101              | Disaster Management    | NC      |
| 3.     | ES101              | Environmental Sciences | 2       |
| 4.     | GW                 | Global Week            | NC      |
| 5.     | CS501              | Cyber Security         | 3       |

#### **<u>12.6 Mandatory Courses</u>**

| Course Code                                                                       | Course Name                                                            | L-T-P        | Credits     | Pre-       |
|-----------------------------------------------------------------------------------|------------------------------------------------------------------------|--------------|-------------|------------|
|                                                                                   |                                                                        |              |             | requisi    |
|                                                                                   |                                                                        |              |             | te         |
| HR101                                                                             | Human Rights & Values                                                  | 2-0-0        | NC          | NIL        |
| Course Outcomes (C                                                                | <b>O</b> )*:                                                           |              |             |            |
| <b>CO1:</b> After completing the course students will be able to Identify         |                                                                        |              |             |            |
|                                                                                   | constitutional or national values, social, professional, religious and |              |             |            |
|                                                                                   | aesthetic values.                                                      |              |             |            |
| CO2:                                                                              | Students will be able to link value education towards professional     |              |             |            |
|                                                                                   | ethics.                                                                |              |             |            |
| CO3:                                                                              | Students will be able to unders                                        | stand about  | national is | sues and   |
|                                                                                   | international cooperation.                                             |              |             |            |
| CO4:                                                                              | Students will be able to follow pe                                     | rsonal deve  | lopment and | d creation |
|                                                                                   | of a positive personality.                                             |              |             |            |
| *The mapping of                                                                   | of CO/PO attainment/Graduate Attri                                     | butes are at | Appendix-A  | ł          |
| Concept of human va                                                               | alues and value education Aim of                                       | education a  | and value e | ducation;  |
| Concept of Human values; types of values; Components of value education. Personal |                                                                        |              |             |            |
| development Self-ar                                                               | alysis, gender equality, physic                                        | ally challe  | nged, inte  | llectually |
| challenged. Respect                                                               | to - age, experience, maturity, fai                                    | mily memb    | ers, neighb | ours, co-  |



workers. Character formation towards positive personality Truthfulness, sacrifice, sincerity, self-control, Tolerance Value education towards national and global development national values - Democracy, socialism, secularism, equality, justice, liberty, freedom and fraternity Social Values - Pity, self-control, universal brotherhood. Professional Values - Knowledge thirst, sincerity in profession, ethics, regularity, punctuality and faith. Religious Values - Tolerance, wisdom, character. National Integration and international understanding, Impact of global development on ethics and values Modern Challenges of Adolescent Emotions and behaviour; Comparison and competition; positive and negative thoughts., Adolescent Emotions, arrogance, anger, selfishness, defiance. Therapeutic measures Control of the mind through physical exercise, meditation (Objectives, types, effect on body, mind and soul) and Yog-sadhna. Human rights – general Concept of Human Rights – Indian and International Perspectives; Evolution of Human Rights; Definitions under Indian and International documents Human rights Right to Life and Liberty Right to Equality Right against Exploitation Cultural and Educational Rights Economic Rights Political Rights Social Rights Human rights of women and children Social Practice and Constitutional Safeguards Female Foeticide and Infanticide Physical assault and harassment Domestic violence Conditions of Working Women Institutions for implementation Violation by State Violation by Individual Nuclear Weapons and terrorism Safeguards.

- Col KK Sharma, Human Value Education and Human Rights, Chitkara Business School, 2014.
- R. S. Naagarazan, Professional Ethics and Human Values, New Age Publishers, 2006.
- Grose, D. N, A text book of value education, Dominant Publishers and Distributors, 2005.

| Course Code                                                             | Course Name                                                    | L-T-P                                                       | Credits     | Pre-<br>requisite |  |
|-------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------|-------------|-------------------|--|
| DM101                                                                   | Diagston Monogoment                                            | 200                                                         | NC          | -                 |  |
| DM101                                                                   | Disaster Management                                            | 2-0-0                                                       | NC          | NIL               |  |
| Course Outcomes (CO                                                     | <b>D</b> )*:                                                   |                                                             |             |                   |  |
| <b>CO1:</b> To increase the knowledge and understanding of the disaster |                                                                |                                                             |             |                   |  |
|                                                                         | phenomenon, its different contextual aspects, impacts and      |                                                             |             |                   |  |
|                                                                         | public health consequences.                                    |                                                             |             |                   |  |
| CO2:                                                                    | To increase the knowledg                                       | To increase the knowledge and understanding of the          |             |                   |  |
|                                                                         | International Strategy for Disa                                | International Strategy for Disaster Reduction (UN-ISDR) and |             |                   |  |
|                                                                         | to increase skills and abilities for implementing the Disaster |                                                             |             |                   |  |
|                                                                         | Risk Reduction (DRR) Strategy                                  | у.                                                          |             |                   |  |
| CO3:                                                                    | To ensure skills and abilities                                 | s to analys                                                 | e potential | effects of        |  |
|                                                                         | disasters and of the strategies                                | and meth                                                    | ods to deli | ver public        |  |
|                                                                         | health response to avert these effects.                        |                                                             |             |                   |  |
| *The mapping of CO/PO attainment/Graduate Attributes are at Appendix-A  |                                                                |                                                             |             |                   |  |
| Disasters: Classification                                               | on, Causes, Impacts: Introduction                              | on to Disa                                                  | sters: Con  | cepts, and        |  |



definitions (Disaster, Hazard, Vulnerability, Resilience, Risks). Impacts (including social, economic, political, environmental, health, psychosocial, etc. Differential impacts- in terms of caste, class, gender, age, location, disability). Classification of hazards/disasters and causes. Principles of disaster management: Approaches to Disaster Risk reduction: Disaster cycle - its analysis, Phases, Culture of safety, prevention, mitigation and preparedness, Community based DRR, Components of Disaster Relief: Water, Food, Sanitation, Shelter, and Health, Structural and non-structural measures. Hazard Profile (India), Disaster Risk Management in India: Hazard and Vulnerability profile of India. Institutional arrangements (Mitigation, Response and Preparedness, DM Act and Policy, Other related policies, plans, programmes and legislation), Role of Panchayati Raj Institutions/Urban Local Bodies (PRIs/ULBs), states, Centre, and other stake-holders. Disaster and Development: Inter-relationship between Disasters and Development: Factors affecting Vulnerabilities, impact of Development projects such as dams, embankments, changes in Land-use etc. urban disasters, Waste Management. Global trends in disasters & Adaptation: Global Trends, Complex emergencies, Pandemics Climate change and Adaptation, Relevance of indigenous knowledge, appropriate technology and local resources.

- Alexander, D. Natural Disasters, ULC press Ltd, London, 1993.
- Carter, W. N. Disaster Management: A Disaster Management Handbook, Asian Development Bank, Bangkok, 1991.
- Alexander David, Introduction in 'Confronting Catastrophe', Oxford University Press, 2000.
- Chakrabarty, U. K. Industrial Disaster Management and Emergency Response, Asian Books Pvt. Ltd., New Delhi 2007.

| Course Code                                                            | Course Name                                                                               | L-T-P                                                | Credits    | Pre-         |  |
|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------|------------|--------------|--|
|                                                                        |                                                                                           |                                                      |            | requisite    |  |
| ES101                                                                  | <b>Environmental Sciences</b>                                                             | 2-0-0                                                | 2          | NIL          |  |
| Course Outcomes (CO)                                                   | *:                                                                                        |                                                      |            |              |  |
| C01:                                                                   | To understand the concept                                                                 | ots about                                            | natural    | resources,   |  |
|                                                                        | ecosystems, biodiversity, end                                                             | ergy reso                                            | urces, en  | vironmental  |  |
|                                                                        | pollution and waste manage                                                                | pollution and waste management which are required to |            |              |  |
|                                                                        | understand the interrelationships of the natural world.                                   |                                                      |            |              |  |
| CO2:                                                                   | To identify and analyze environmental problems both natural                               |                                                      |            |              |  |
|                                                                        | (disasters such as floods and                                                             | d earthqu                                            | akes) and  | man-made     |  |
|                                                                        | (industrial pollution and global                                                          | warming).                                            |            |              |  |
| CO3:                                                                   | Understand the societal and en                                                            | nvironmen                                            | tal impact | ts of energy |  |
|                                                                        | and examine alternative solut                                                             | tions for                                            | meeting t  | he growing   |  |
|                                                                        | energy needs                                                                              |                                                      |            |              |  |
| *The mapping of CO/PO attainment/Graduate Attributes are at Appendix-A |                                                                                           |                                                      |            |              |  |
| Introduction to environm                                               | Introduction to environmental studies: Multidisciplinary nature of environmental studies; |                                                      |            |              |  |
| Scope and import                                                       | ance; Concept of sust                                                                     | ainability                                           | and        | sustainable  |  |

development. Ecosystems: Structure and function of an ecosystem. Producers, consumers and decomposers, energy flow in the ecosystem, food chains, food webs and ecological succession, Introduction, types, characteristic features, and case study of the following ecosystems: Forest ecosystem, Grassland ecosystem, Desert ecosystem, Aquatic ecosystems estuaries), Natural (ponds, streams. lakes. rivers. oceans. Resources: Renewable and non-renewable resources, Land resources and Land use change; land degradation, soil erosion and desertification, Deforestation: Causes and Impacts due to mining, dams building on environment, on forest, biodiversity and tribal populations. Water resources: Use and over exploitation of surface and ground water, drought, conflicts over water (international and inter-state). Energy floods. resources: renewable and non-renewable energy sources use of alternate energy sources, Growing energy needs, Case studies. Biodiversity and Conservation: Definition, Levels of biological diversity: genetic, species and ecosystem diversity. Bio-geographical classification of India; biodiversity patterns and global biodiversity Hot-sports. India as a mega-biodiversity nation; Endangered and endemic species of India. Threats to biodiversity: Habitat loss, poaching of wildlife, man wildlife conflicts, biological invasions; Conservation of biodiversity: In-situ and Ex-situ conservation of biodiversity. Ecosystem and biodiversity services: Ecological, economic, social, ethical, aesthetic and informational values. Environmental Pollution: Definition, types, Causes, effects and control measures of Air, Water, Soil, and Noise pollution. Nuclear hazards and human health risks. Solid waste Management: control measures of urban and industrial wastes, Pollution case studies. Environmental Policies & Practices: Climate change, global warming, ozone layer depletion, acid rain and impacts on human communities and agriculture. Environment Laws; Environment Protection Act; Air(Prevention and control of Pollution)Act; Water (Prevention and control of Pollution)Act; Wildlife Protection Act ; Forest Conservation Act. International agreements; Montreal and Kyoto protocols and Conservation on Biological Diversity (CBD). Nature reserves, Tribal Populations and rights, and human wildlife conflicts in Indian context. Human Communities and the Environment: Human Population growth: Impacts on environment, human health and welfare. Resettlement and rehabilitation of project affected persons; case studies. Disaster management; floods, earthquake, cyclones and landslides. Environmental movements; Chipko, silent valley, Bishnois of Rajasthan. Environmental ethics: Role of Indian and other religions and cultures in environmental conservation. Environmental communication and public awareness, case studies (CNG vehicles in Delhi). Field Work.

- Textbook of 'Environmental Studies for Undergraduate Courses' by ErachBharucha, First Edition, University Grants Commission, Universities Press (India) Private Limited.
- 'The Basics of Environmental Sciences' by Manish Randhawa, First edition, Chitkara University publications.

| Course                                                                              | Course Name                                                                             | L-T-P        | Credits       | Pre-        |  |
|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------|---------------|-------------|--|
| Code                                                                                |                                                                                         |              |               | requisite   |  |
| GW2001                                                                              | G-Visions                                                                               |              | NC            | NIL         |  |
| Course Ou                                                                           | tcomes (CO)**:                                                                          |              |               |             |  |
| <b>CO1:</b> Understand complex dimension of diversity, equity, and inclusion around |                                                                                         |              |               |             |  |
|                                                                                     | the world, including language, culture and                                              | identity.    |               |             |  |
| CO2:                                                                                | Synthesizes knowledge and meaning from                                                  | multiple so  | ources to enh | ance        |  |
|                                                                                     | decision - making in diverse contexts.                                                  |              |               |             |  |
| CO3:                                                                                | Use technology, human and natural capita                                                | l, informati | ion resources | s, and      |  |
|                                                                                     | diverse ways to solve problems                                                          |              |               |             |  |
| *The mappi                                                                          | ng of CO/PO attainment/Graduate Attribute                                               | es are at Ap | pendix-A      |             |  |
| Evolution o                                                                         | f mobile technologies, Conspiracy theories,                                             | Why 5G,      | why millime   | etre waves, |  |
| ionizing and                                                                        | d non-ionizing radiations, frequency spectru                                            | um of elec   | tromagnetic   | radiations, |  |
| health cond                                                                         | cerns related to microwaves and mm-w                                                    | aves, Ove    | rview of 50   | G and its   |  |
| applications                                                                        | , Technical enablers, Roles of communicati                                              | on enginee   | r, Machine le | earning for |  |
| mm-wave, l                                                                          | mm-wave, Hybrid BF using deep learning neural nets, Overview of IoT, what is antenna,   |              |               |             |  |
| green anten                                                                         | green antenna, examples of antenna, Reconfigurable antenna, Design for future wireless, |              |               |             |  |
| 5G mm-wa                                                                            | we system and cognitive radio, introduct                                                | ion to rad   | io astronom   | y, Neutral  |  |
| hydrogen d                                                                          | istribution, Radio astronomy distribution,                                              | Radio teles  | scope, Radio  | telescope   |  |

hydrogen distribution, Radio astronomy distribution, Radio telescope, Radio telescope array, Beamforming, Radio telescope, Astronomical observation, Astrometry, photometry, spectroscopy, Radio signal sources.

| Course Code       | Course Name                                                                        | L-T-P          | Credits      | Pre-       |  |
|-------------------|------------------------------------------------------------------------------------|----------------|--------------|------------|--|
|                   |                                                                                    |                |              | requisi    |  |
|                   |                                                                                    |                |              | te         |  |
| CS501             | Cyber Security                                                                     | 3-0-0          | 3            | NIL        |  |
| Course Outcom     | es (CO)*:                                                                          |                |              |            |  |
| CO1:              |                                                                                    |                |              |            |  |
|                   | integrity and availability                                                         |                |              |            |  |
| CO2:              | Acquire knowledge on Threats and attacks and exploit vulnerabilities               |                |              |            |  |
|                   |                                                                                    |                |              |            |  |
| CO3:              | Gain sufficient knowledge on C                                                     | •              | ty architec  | ture and   |  |
|                   | operations and acquire ability to hand                                             |                |              |            |  |
|                   | ping of CO/PO attainment/Graduate At                                               |                | 11           |            |  |
|                   | Security: Security principles, threats                                             |                | -            |            |  |
| Cryptography: C   | Cryptographic mechanisms, Classical E                                              | Encryption Te  | chniques S   | ymmetric   |  |
| and Asymmetric    | c cryptography (basics) Introduction                                               | to cybercrit   | me, cyberci  | rime and   |  |
| information secu  | urity, Classifications of cybercrimes                                              | Cybercrime     | and the Ind  | dian ITA   |  |
| 2000, Cyber offe  | enses: Introduction, how criminals plan                                            | the attacks?   | Botnets- Th  | e fuel for |  |
| cybercrime. Phi   | cybercrime. Phishing, Password cracking, key loggers and sql injection, attacks on |                |              |            |  |
| wireless network  | ks. Cost of cybercrimes and IPR issu                                               | es: lessons f  | or organizat | tion, web  |  |
| threats for organ | ization, security and privacy implicati                                            | ons from clo   | ud computin  | ng, social |  |
| media marketing   | g: security risks and perils for organiz                                           | zations, socia | l computing  | g and the  |  |



associated challenges for organizations, protecting people's privacy in the organization, organizational guidelines for internet usage, safe computing guidelines and computer usage policy, incident handling: an essential component of cyber security. Forensics: Best practices for organizations, Media and Asset Protection, Importance of endpoint security in organizations, cybercrime and cyber terrorism: social, political, ethical and psychological dimensions, introduction, intellectual property in the cyberspace, the ethical dimensions of cybercrimes, the Psychology, mindset and skills of hackers and other cybercriminals. Cybercrime: Illustrations, Examples and mini cases, Illustrations of financial frauds in cyber domain, digital signature related crime scenarios.

## Suggested Book(s):

- Nina Godbole, SunitBelapure, Cyber Security, Wiley India Pvt. Ltd.;2011.
- Dieter Gollmann, John Wiley & Sons, ISBN: 470-86293-9; 2006.
- William Stallings, Network Security Essentials, 4th Edition, Pearson Publication.
- Bruce Schneier, Applied Cryptography, Wiley & Sons; Edition 2001.

| S. No. | Course Code | Name of the Course                                                       | Credits |
|--------|-------------|--------------------------------------------------------------------------|---------|
| 1      | AS101       | Engineering Exploration                                                  | 3       |
| 2      | EC130       | Integrated Project                                                       | 2       |
| 3      | EC131       | Major Project                                                            | 4       |
| 4      | EC132       | Seminar                                                                  | 1       |
| 5      | EC133       | Industry Oriented Hands on Experience<br>(Six Month Industrial Training) | 15      |
| 6      | EC134       | Co-op Project at Industry: Module I                                      | 15      |
| 7      | EC136       | Co-op Project at Industry: Module II                                     | 15      |

## **12.7 Project Work**

| Course                                                                                | Course Name                                                                           | L-T-P        | Credits       | Pre-        |
|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------|---------------|-------------|
| Code                                                                                  |                                                                                       |              |               | requisite   |
| AS101                                                                                 | Engineering Exploration                                                               |              | 3             | NIL         |
| Course Out                                                                            | tcomes (CO)**:                                                                        |              |               |             |
| CO1:                                                                                  | Identify community problems and engineer                                              | ring solutio | ons to them.  |             |
| CO2:                                                                                  | Analyze a given problem using process of                                              | engineering  | g problem an  | alysis.     |
| CO3:                                                                                  | Build simple systems using engineering de                                             | sign proces  | SS            |             |
| *The mapping                                                                          | ng of CO/PO attainment/Graduate Attribute                                             | es are at Ap | pendix-A      |             |
| Introduction                                                                          | to engineering exploration, what is comm                                              | unity? Bas   | ics of team   | formation,  |
| field visit to                                                                        | community area, understanding the impor                                               | tance of ne  | ed, engineer  | ing design  |
| fundamental                                                                           | s, basics of design process, PUGG chart, b                                            | lack box re  | presentation. | , glass box |
| representatio                                                                         | representation. Introduction to mechanisms, different type of mechanisms, crank-shaft |              |               |             |
| mechanism, chain mechanism, rack-pinion mechanism, pulley mechanism, belt             |                                                                                       |              |               |             |
| mechanism, chain-sprocket mechanism, concept of gears and teeth, gear ratio, relation |                                                                                       |              |               |             |
| between spe                                                                           | ed and torque. Degree of freedom and mo                                               | vements. In  | ntroduction t | o Arduino   |

embedded platform, understanding the different components of platform board, basic programming on Arduino platform, interfacing of peripherals, introduction to sensor, interfacing of Infrared-sensor, ultrasonic sensor, PIR sensor, LDR sensor, interfacing of DC motors, concept of pulse width modulation, speed control of DC motors, H-bridge concept, integrating peripherals to an application. Aspects of project management, allocation of team plan, technical report writing, project execution plan. Developing of working prototype of the solution.

| Course                                                                             | Course Name                                           | L-T-P                                                                   | Credits | Pre-      |  |  |
|------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------|---------|-----------|--|--|
| Code                                                                               |                                                       |                                                                         |         | requisite |  |  |
| EC130                                                                              | Integrated Project                                    |                                                                         | 2       | NIL       |  |  |
| Course Outcomes (CO)**:                                                            |                                                       |                                                                         |         |           |  |  |
| CO1:                                                                               | Identify multi-disciplinary approach requin           | Identify multi-disciplinary approach required in solving an engineering |         |           |  |  |
|                                                                                    | problem                                               |                                                                         |         |           |  |  |
| <b>CO2:</b> Analyze a given problem using process of engineering problem analysis. |                                                       |                                                                         |         |           |  |  |
| CO3:                                                                               | Build simple systems using engineering design process |                                                                         |         |           |  |  |
| <b>%</b> Т1                                                                        | $\frac{1}{1}$                                         |                                                                         |         |           |  |  |

\*The mapping of CO/PO attainment/Graduate Attributes are at Appendix-A

The Integrated Projects offered in fourth semester provides the opportunity to the students to apply their knowledge which they learned in first three semesters. Assessment is by means of evaluating seminar presentations, submission of synopsis and project report. Projects are undertaken individually or in small groups that introduces the dimension of workload management into the program to enable completion of a large, relatively unstructured "assignment" over the course of the semester. The projects undertaken span a diverse range of topics, including theoretical, simulation and experimental studies. The emphasis is necessarily on facilitating student learning in technical, project management and presentation spheres. Electronics and Computer Engineering involves understanding, designing, controlling, and maintaining electronics equipment in addition to software testing and development. The latest projects are aimed to build the trending technologies in the field of electronics, communication, electrical and computer science engineering and incorporate the technological skills that an Engineering student should possess to improve job prospects.

| Course<br>Code                                                                 | Course Name                                                          | L-T-P                                                                               | Credits     | Pre-<br>requisite |  |
|--------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------|-------------------|--|
| EC131                                                                          | Major Project                                                        | 4-0-0                                                                               | 4           | NIL               |  |
| Course Ou                                                                      | tcomes (CO)**:                                                       |                                                                                     |             |                   |  |
| CO1:                                                                           | To apply multidisciplinary approach in solving engineering problems. |                                                                                     |             |                   |  |
| CO2:                                                                           | Undertake problem identification, formula                            | Undertake problem identification, formulation and solution.                         |             |                   |  |
| CO3:                                                                           | Design prototype models for the problems process.                    | Design prototype models for the problems solved through engineering design process. |             |                   |  |
| *The mapping of CO/PO attainment/Graduate Attributes are at Appendix-A         |                                                                      |                                                                                     |             |                   |  |
| Final Year Projects represent the culmination of study towards the Bachelor of |                                                                      |                                                                                     |             |                   |  |
| Engineering                                                                    | g degree. Projects offer the opportunity to                          | apply and                                                                           | extend mate | rial learned      |  |

throughout the program. Assessment is by means of a seminar presentation, submission of a thesis, and a public demonstration of work undertaken. Projects are undertaken individually or in small groups that introduces the dimension of workload management into the program to enable completion of a large, relatively unstructured "assignment" over the course of the semester. The projects undertaken span a diverse range of topics, including theoretical, simulation and experimental studies, and vary from year to year. The emphasis is necessarily on facilitating student learning in technical, project management and presentation spheres. Electronics and Computer Science Engineering involves understanding, designing, controlling, and maintaining electronics equipment. Some of the project areas of this field are embedded systems and IoT, Robotics and Automation, Artificial Intelligence, Data Science and VLSI Design. The latest projects are aimed to build the trending technologies in the field of electronics, communication and computer science engineering and incorporate the technological skills that an Electronics Engineering student should possess to improve job prospects.

| Course                                                | Course Name                                                                         | L-T-P        | Credits       | Pre-      |  |
|-------------------------------------------------------|-------------------------------------------------------------------------------------|--------------|---------------|-----------|--|
| Code                                                  |                                                                                     |              |               | requisite |  |
| EC132                                                 | Seminar                                                                             |              | 1             | NIL       |  |
| Course Outcomes (CO)**:                               |                                                                                     |              |               |           |  |
| CO1:                                                  | To provide a student with a thorough group                                          | nding in the | e basics of a | subject;  |  |
| CO2:                                                  | <b>CO2:</b> To acquire in depth knowledge of a specialized topic where appropriate. |              |               |           |  |
| CO3: To acquire presentation and communication skills |                                                                                     |              |               |           |  |
| *The mapp                                             | ing of CO/PO attainment/Graduate Attribute                                          | es are at Ap | pendix-A      |           |  |

The seminar provides the opportunity to the students to enhance their knowledge through a diverse range of topics, including theoretical, simulation and experimental studies. The students develop ability to review, prepare and present technological developments happening in the electronics industry and prepare to face placement interview. During the seminar session each student is expected to prepare and present a topic on engineering/ technology, and assessment is done by means of evaluating their presentations, submission of synopsis and technical report. The emphasis is necessarily on facilitating student learning in technical review and presentation spheres. Electronics and Computer Engineering involves understanding, designing, controlling, and maintaining electronics equipment in addition to software testing and development. The latest seminar topics are aimed to identify and present the trending technologies in the field of electronics, communication, electrical and computer science engineering and incorporate the technological skills that an Engineering student should possess to improve job prospects.

| Course    | Course Name                                                                 | L-T-P | Credits | Pre-      |  |  |
|-----------|-----------------------------------------------------------------------------|-------|---------|-----------|--|--|
| Code      |                                                                             |       |         | requisite |  |  |
| EC133     | Industry Oriented Hands on Experience                                       | 24    | 15      | NIL       |  |  |
|           | (Six Month Industrial Training)                                             | weeks |         |           |  |  |
| Course Ou | Course Outcomes (CO)**:                                                     |       |         |           |  |  |
| CO1:      | Understanding of the importance of sustainability and cost-effectiveness in |       |         |           |  |  |
|           | design and developments of engineering solution.                            |       |         |           |  |  |



| CO2:        | Ability to identify, formulate and model problems and find engineering |  |  |
|-------------|------------------------------------------------------------------------|--|--|
|             | solution based on a systems approach.                                  |  |  |
| CO3:        | Capability and enthusiasm for self-improvement through continuous      |  |  |
|             | professional development and life-long learning                        |  |  |
| <b>CO4:</b> | Ability to communicate efficiently and effectively.                    |  |  |

\*The mapping of CO/PO attainment/Graduate Attributes are at Appendix-A 6 Months Training (IOHE) is essential for Electronics and Computer Science Engineering (B.E) students as part of their curriculum/syllabus. This course has been designed to fulfil the need of industrial exposure among the students, where they get an experience of industrial environment in their relevant fields. During the tenure of 6 months training, students are exposed with the actual organizational structure and culture of an environment and also with industrial live projects. Students can learn about the practical aspects of implementation under the guidance and mentorship of industry experts also. The course is implemented with the aim to develop different types of skills leading to achieve following competencies, such as performing many activities/skills and get information pertaining to electronics and computers industry in areas of software development as well as process, processing equipments, materials, testing and instruments.

| Course                                                                                     | Course Name                                                                 | L-T-P | Credits | Pre-      |
|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------|---------|-----------|
| Code                                                                                       |                                                                             |       |         | requisite |
| EC134                                                                                      | Co-op Project at Industry: Module I                                         | 24    | 15      | NIL       |
|                                                                                            |                                                                             | weeks |         |           |
| Course Ou                                                                                  | itcomes (CO)**:                                                             |       |         |           |
| CO1:                                                                                       | Understanding of the importance of sustainability and cost-effectiveness in |       |         |           |
|                                                                                            | design and developments of engineering solution.                            |       |         |           |
| CO2:                                                                                       | Ability to identify, formulate and model problems and find engineering      |       |         |           |
|                                                                                            | solution based on a systems approach.                                       |       |         |           |
| CO3:                                                                                       | Capability and enthusiasm for self-improvement through continuous           |       |         | ous       |
|                                                                                            | professional development and life-long learning                             |       |         |           |
| CO4:                                                                                       | Ability to communicate efficiently and effectively.                         |       |         |           |
|                                                                                            | *The mapping of CO/PO attainment/Graduate Attributes are at Appendix-A      |       |         |           |
| CO-OP Training is essential for Electronics and Computer Science Engineering (B.E)         |                                                                             |       |         |           |
| students as part of their curriculum/syllabus. This course has been designed to fulfil the |                                                                             |       |         |           |
| need of industrial exposure among the students, where they get an experience of industrial |                                                                             |       |         |           |
| environment in their relevant fields. During the tenure of training, students are exposed  |                                                                             |       |         |           |
| with the actual organizational structure and culture of an environment and also with       |                                                                             |       |         |           |
| industrial live projects. Students can learn about the practical aspects of implementation |                                                                             |       |         |           |
| under the guidance and mentorship of industry experts also. The course is implemented      |                                                                             |       |         |           |
| with the aim to develop different types of skills leading to achieve following             |                                                                             |       |         |           |
| competencies, such as performing many activities/skills and get information pertaining to  |                                                                             |       |         |           |
| electronics and computers industry in areas of software development as well as process,    |                                                                             |       |         |           |
| processing equipments, materials, testing and instruments.                                 |                                                                             |       |         |           |

| Course<br>Code | Course Name                                                                 | L-T-P          | Credits     | Pre-<br>requisite |
|----------------|-----------------------------------------------------------------------------|----------------|-------------|-------------------|
| EC136          | Co-op Project at Industry: Module II                                        | 24             | 15          | NIL               |
|                |                                                                             | weeks          |             |                   |
| Course Ou      | tcomes (CO)**:                                                              |                |             | 1                 |
| CO1:           | Understanding of the importance of sustainability and cost-effectiveness in |                |             |                   |
|                | design and developments of engineering solution.                            |                |             |                   |
| CO2:           | Ability to identify, formulate and model problems and find engineering      |                |             | eering            |
|                | solution based on a systems approach.                                       |                |             |                   |
| CO3:           | Capability and enthusiasm for self-improvement through continuous           |                |             | ous               |
|                | professional development and life-long learning                             |                |             |                   |
| CO4:           | Ability to communicate efficiently and e                                    | ffectively.    |             |                   |
| *The mapp      | ing of CO/PO attainment/Graduate Attribution                                | ites are at Ap | pendix-A    |                   |
| CO-OP Tra      | aining is essential for Electronics and C                                   | omputer Sci    | ence Engine | ering (B.E)       |
| students as    | part of their curriculum/syllabus. This co                                  | ourse has bee  | en designed | to fulfil the     |
| need of ind    | ustrial exposure among the students, wher                                   | e they get an  | experience  | of industrial     |
|                | nt in their relevant fields. During the ten                                 |                | -           |                   |
|                | ctual organizational structure and culture                                  |                | 0           | -                 |
|                | ive projects. Students can learn about the                                  |                |             |                   |

industrial live projects. Students can learn about the practical aspects of implementation under the guidance and mentorship of industry experts also. The course is implemented with the aim to develop different types of skills leading to achieve following competencies, such as performing many activities/skills and get information pertaining to electronics and computers industry in areas of software development as well as process, processing equipments, materials, testing and instruments.

| Course                                                                                      | Course Name                                                                             | L-T-P | Credits | Pre-      |
|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------|---------|-----------|
| Code                                                                                        |                                                                                         |       |         | requisite |
| ER101                                                                                       | CEED Acceleration Program(CAP)                                                          | 0-0-4 | 3       | NIL       |
|                                                                                             | Cohort-II-Module I                                                                      |       |         |           |
| Course Out                                                                                  | tcomes (CO)**:                                                                          |       |         |           |
| CO1:                                                                                        | <b>D1:</b> Use confidence acquired in oral and visual presentation skills to sell their |       |         |           |
|                                                                                             | ideas.                                                                                  |       |         |           |
| CO2:                                                                                        | Implement personal skills for sales and marketing and work under pressure.              |       |         |           |
| CO3:                                                                                        | Develop, implement and evaluate strategies for setting up a business idea.              |       |         |           |
| *The mapping of CO/PO attainment/Graduate Attributes are at Appendix-A                      |                                                                                         |       |         |           |
| Course Introduction: Self Discovery Finding Your Flow, Effectuation – I, Effectuation – II, |                                                                                         |       |         |           |
| Case Study                                                                                  | Case Study, Identify Your Entrepreneurial Style, Master Class - Team Formation,         |       |         |           |
| Identifying Problems Worth Solving – I, Entrepreneur Session - Identify Problems Worth      |                                                                                         |       |         |           |
| Solving – II, Design Thinking, Look for Solutions, Identifying Problems Worth Solving –     |                                                                                         |       |         |           |
| I, Entrepreneur Session - Identify Problems Worth Solving – II, Design Thinking, Look for   |                                                                                         |       |         |           |
| Solutions, Present the Problem You Love - I, Present the Problem You Love - II,             |                                                                                         |       |         |           |
| Customers and Markets, Identify Your Customer Segment and Niche, Identify Jobs, Pains,      |                                                                                         |       |         |           |
| and Gains, and Early Adopters, Master Class: Craft Your Value Proposition – I, Craft Your   |                                                                                         |       |         |           |



Value Proposition – II, Outcome-Driven Innovation (ODI), Present Your Value Proposition Canvas(VPC), Basics of Business Model and Lean Approach, Sketch the Lean Canvas – I, Sketch the Lean Canvas – II, Risks and Assumptions, Class Presentation - Pitch Your Business Model.

| Course                                                                                    | Course Name                                                                            | L-T-P     | Credits    | Pre-        |
|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------|------------|-------------|
| Code                                                                                      |                                                                                        |           |            | requisite   |
| ER102                                                                                     | CEED Acceleration Program(CAP)                                                         | 0-0-4     | 2          | NIL         |
|                                                                                           | Cohort-II-Module II                                                                    |           |            |             |
| Course Ou                                                                                 | tcomes (CO)**:                                                                         |           |            |             |
| CO1:                                                                                      | CO1: Realize entrepreneurship as a career choice and identify resources to do business |           |            |             |
| CO2:                                                                                      | Implement entrepreneurial skill to evaluate business idea and start that idea.         |           |            |             |
| CO3:                                                                                      | Conduct systematic analysis on the practical details before stating business           |           |            |             |
|                                                                                           | idea.                                                                                  |           |            |             |
| *The mapping of CO/PO attainment/Graduate Attributes are at Appendix-A                    |                                                                                        |           |            |             |
| Validation (Blue Ocean Strategy to refine your value proposition), Validation (Applying   |                                                                                        |           |            |             |
| the Four Actions Framework), Validation (Build Solution Demo), Validation Problem-        |                                                                                        |           |            |             |
| Solution Fit                                                                              | t, Identify Your MVP and Build It, Build M                                             | VP and Co | onduct MVP | Interviews, |
| Prototyping                                                                               | Prototyping and MVP, Present your MVP, Money (Cost), Money (Revenue & Pricing),        |           |            |             |
| Money (Profitability Checks), Money (Bootstrapping & Initial Financing), Money            |                                                                                        |           |            |             |
| (Practice Pitching), Team (Shared Leadership), Team (Identify Job Roles for Hiring),      |                                                                                        |           |            |             |
| Team (Practice Pitching), Marketing & Sales (Positioning & Branding), Marketing &         |                                                                                        |           |            |             |
| Sales (Channels), Marketing & Sales, (Sales Planning), Marketing & Sales (Selling Skills  |                                                                                        |           |            |             |
| I), Marketing & Sales (Selling Skills II), Support (Project Management), Support (Project |                                                                                        |           |            |             |
| Tracking), Support (Basics of Business Regulations), Support (Getting Started with your   |                                                                                        |           |            |             |
| Venture).                                                                                 | Venture).                                                                              |           |            |             |